Muutke küpsiste eelistusi

Transactions on Large-Scale Data- and Knowledge-Centered Systems LVII 2024 ed. [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 151 pages, kõrgus x laius: 235x155 mm, 21 Illustrations, color; 6 Illustrations, black and white; IX, 151 p. 27 illus., 21 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14970
  • Ilmumisaeg: 25-Oct-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662701421
  • ISBN-13: 9783662701423
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 151 pages, kõrgus x laius: 235x155 mm, 21 Illustrations, color; 6 Illustrations, black and white; IX, 151 p. 27 illus., 21 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14970
  • Ilmumisaeg: 25-Oct-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662701421
  • ISBN-13: 9783662701423
The LNCS journal Transactions on Large-scale Data and Knowledge-centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability.



This, the 57th issue of Transactions on Large-Scale Data and Knowledge-Centered Systems, contains five fully revised selected regular papers. Topics covered include leveraging machine learning for effective data management, access control models, reciprocal authorizations, Internet of Things, digital forensics, code similarity search, volunteered geographic information, and spatial data quality.

Leveraging Machine Learning for Effective Data Management.- Exploring Reciprocal Exchanges and Trust-Based Authorizations: A Feasibility Demonstration with Location-Based Services.- Device Forensics in Smart Homes: Insights on Advances, Challenges and Future Directions.- Evaluation of Code Similarity Search Strategies in Large-Scale Codebases.- Quality Assessment of Volunteered Geographic Information: A Survey.