Muutke küpsiste eelistusi

Transformer-Based Design Techniques for Oscillators and Frequency Dividers 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 205 pages, kõrgus x laius: 235x155 mm, kaal: 4956 g, XI, 205 p., 1 Hardback
  • Ilmumisaeg: 20-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319158732
  • ISBN-13: 9783319158730
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 205 pages, kõrgus x laius: 235x155 mm, kaal: 4956 g, XI, 205 p., 1 Hardback
  • Ilmumisaeg: 20-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319158732
  • ISBN-13: 9783319158730
This book describes in-depth transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance. Readers are enabled to design for low supply voltage, low power consumption, acceptable phase noise, high operation frequencies, and wide frequency tuning range and locking range. Design, optimization, and measured performance of various oscillators and dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range, at very high frequencies. This book is an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems for wireless applications.
1 Introduction
1(6)
1.1 Motivation
1(3)
1.2 Book Organization
4(3)
References
4(3)
2 Transformer Design and Characterization in CMOS Process
7(14)
2.1 Background
7(2)
2.2 Transformer Layout
9(3)
2.3 Transformer Measurement and Characterization
12(9)
References
19(2)
3 Design Considerations for CMOS Voltage-Controlled Oscillators (VCOs)
21(36)
3.1 Basic Concepts
21(7)
3.1.1 Start-Up Oscillation Conditions
21(1)
3.1.2 Phase-Noise Definition
22(2)
3.1.3 LC-Tank Properties
24(3)
3.1.4 Frequency Tuning
27(1)
3.2 Phase-Noise Analysis
28(6)
3.2.1 Linear and Time-Invariant (LTI) Model
29(2)
3.2.2 Linear and Time-Variant (LTV) Model
31(3)
3.3 Design Insights Using the Time-Variant Model
34(14)
3.3.1 Phase Noise in 1/f2 Region
35(3)
3.3.2 Phase Noise in 1/f3 Region
38(5)
3.3.3 Comparison of Different LC-VCO Topologies
43(3)
3.3.4 VCO Figure of Merit
46(2)
3.4 Quadrature VCOs
48(4)
3.5 Low-Voltage CMOS VCOs
52(1)
3.6 Wideband CMOS VCOs
52(5)
References
53(4)
4 Design Considerations for CMOS Frequency Dividers
57(20)
4.1 Background
57(1)
4.2 Latch-Based Frequency Dividers
57(2)
4.3 Injection-Locked Frequency Dividers
59(12)
4.3.1 Indirect-Injection ILFDs
60(5)
4.3.2 Direct-Injection ILFDs
65(3)
4.3.3 Design Consideration for the LC-Tank
68(1)
4.3.4 Phase-Noise Performance
69(1)
4.3.5 ILFD Figure of Merit
70(1)
4.4 Miller Frequency Dividers
71(3)
4.5 Summary
74(3)
References
76(1)
5 Ultralow-Voltage VCO and QVCO Using Transformer Technique
77(30)
5.1 Introduction
77(1)
5.2 Transformer-Feedback VCO (TF-VCO)
78(11)
5.2.1 Topology and Circuit Model
78(1)
5.2.2 Oscillation Frequency and Phase Noise
79(6)
5.2.3 Circuit Implementation
85(2)
5.2.4 Experimental Results
87(2)
5.3 Transformer-Coupled QVCO (TC-QVCO)
89(18)
5.3.1 Topology and Circuit Model
89(6)
5.3.2 Oscillation Frequency
95(1)
5.3.3 IQ Imbalance and Phase Noise
96(1)
5.3.4 Circuit Implementation
97(3)
5.3.5 Experimental Results
100(5)
References
105(2)
6 Transformer-Based Dual-Mode VCO
107(34)
6.1 Introduction
107(4)
6.2 Analysis of the Transformer-Based Dual-Mode Oscillators
111(17)
6.2.1 One-Port Oscillators
111(7)
6.2.2 Two-Port Oscillators
118(4)
6.2.3 Comparison of One-Port and Two-Port Oscillators
122(6)
6.3 Case Study of a Dual-Mode QVCO for SDR Frequency Synthesizer
128(13)
6.3.1 Circuit Implementation
128(4)
6.3.2 Experimental Results
132(7)
References
139(2)
7 Magnetically-Tuned Multimode CMOS VCO
141(20)
7.1 Introduction
141(1)
7.2 Transformer-Based Magnetic-Tuning Method
142(8)
7.2.1 Working Principle
142(3)
7.2.2 Analysis of the Switched-Triple-Shielded Transformer
145(5)
7.3 Design and Analysis of the MT-VCO
150(4)
7.4 Experimental Results
154(7)
References
160(1)
8 Transformer-Based Injection-Locked Frequency Divider
161(28)
8.1 Introduction
161(1)
8.2 Ultralow-Voltage ILFDs Using Transformer Feedback
162(16)
8.2.1 Regenerative-ILFD Architecture
162(1)
8.2.2 Ultralow-Voltage Regenerative ILFD
163(8)
8.2.3 Experimental Results
171(7)
8.3 Self-Frequency-Tracking ILFD
178(11)
8.3.1 Locking Range Limitation of the Conventional Direct-Injection ILFDs
178(1)
8.3.2 Self-Frequency-Tracking ILFD
179(5)
8.3.3 Experimental Results
184(4)
References
188(1)
9 Conclusion
189(8)
References
193(4)
Appendix 197(6)
Index 203
Since September 1994, Howard Luong has joined the EEE faculty at the Hong Kong University of Science and Technology where he is a professor. Kevin Jun Yin is a Postdoc Researcher at The Hong Kong University of Science and Technology.