About the Author |
|
xiii | |
Preface |
|
xv | |
|
Section I General Biomechanical, Clinical, And Biological Concepts |
|
|
|
|
3 | (16) |
|
|
3 | (5) |
|
1.2 Biomechanical Concepts |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (4) |
|
|
15 | (2) |
|
|
17 | (2) |
|
|
18 | (1) |
|
2 Mechanical Behavior of Cortical Bone |
|
|
19 | (14) |
|
|
19 | (1) |
|
2.2 Cortical Bone Structure and Composition |
|
|
20 | (1) |
|
2.3 Linear Elasticity Behavior |
|
|
21 | (1) |
|
2.4 Mechanical Behavior of Bone |
|
|
22 | (2) |
|
2.5 Anisotropic Behavior of the Cortical Bone |
|
|
24 | (1) |
|
2.6 Compressive and Tensile Strength of Cortical Bone |
|
|
24 | (1) |
|
2.7 Compressive and Tensile Strength in Longitudinal and Transverse Directions |
|
|
25 | (1) |
|
2.8 Brittle Damaged Plasticity Model of Cortical Bone |
|
|
25 | (2) |
|
2.9 Fractographic Analysis of Cortical Bone |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (5) |
|
|
29 | (4) |
|
3 Mechanical Behavior of Trabecular Bone |
|
|
33 | (12) |
|
|
33 | (1) |
|
3.2 Macrostructure Level of Trabecular Bone |
|
|
34 | (1) |
|
3.3 Morphological Indices Specified for Trabecular Bone |
|
|
35 | (1) |
|
3.4 Trabecular Bone Mechanical Properties |
|
|
35 | (3) |
|
3.5 Fatigue Response of Trabecular Bone |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (6) |
|
|
40 | (5) |
|
Section II INTRODUCTION TO TRAUMA PLATING SYSTEMS |
|
|
|
4 Trauma Plating Fixation |
|
|
45 | (20) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (4) |
|
4.4 Limited Contact Surface |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
4.8 Compression and Lagging Mechanism |
|
|
52 | (1) |
|
|
53 | (2) |
|
4.10 Soft-Tissue Irritation |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
59 | (1) |
|
4.14 Screw Fixation in Osteoporotic Bone |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (2) |
|
|
62 | (3) |
|
|
63 | (2) |
|
5 Biomechanical Evaluation Methods |
|
|
65 | (24) |
|
|
65 | (1) |
|
|
66 | (7) |
|
5.3 Finite Element Analysis |
|
|
73 | (10) |
|
5.4 Combination of Experimental Testing and FEA |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (3) |
|
|
87 | (2) |
|
6 Biomechanics of Plating Fixation |
|
|
89 | (26) |
|
6.1 Introduction to Biomechanics |
|
|
90 | (4) |
|
6.2 Clinical Biomechanical Concepts |
|
|
94 | (7) |
|
6.3 Effect of Mechanical Loading on Bone Remodeling |
|
|
101 | (1) |
|
6.4 AO Essential Principles |
|
|
101 | (2) |
|
6.5 Biomechanics of Fracture Fixation |
|
|
103 | (6) |
|
|
109 | (1) |
|
|
109 | (2) |
|
|
111 | (4) |
|
|
111 | (4) |
|
Section III BIO MATERIALS IN TRAUMA PLATING SYSTEMS |
|
|
|
7 Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium) |
|
|
115 | (28) |
|
|
115 | (1) |
|
|
116 | (7) |
|
|
123 | (4) |
|
|
127 | (4) |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
134 | (9) |
|
|
134 | (9) |
|
8 Biodegradable Metals (Biodegradable Magnesium Alloys) |
|
|
143 | (16) |
|
|
143 | (1) |
|
8.2 Mechanical Deterioration |
|
|
144 | (1) |
|
8.3 In Vivo Degradation of Magnesium Alloys |
|
|
145 | (3) |
|
8.4 In Vivo Evaluation of Magnesium Alloys With Surface Treatments |
|
|
148 | (1) |
|
8.5 In Vitro Evaluation of Magnesium Alloys With Surface Treatments |
|
|
149 | (2) |
|
8.6 Effect of Manufacturing Processing on Degradation Rate |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (5) |
|
|
154 | (5) |
|
9 Bioinert Polymers (Polyetheretherketone) |
|
|
159 | (24) |
|
|
159 | (2) |
|
9.2 PEEK Biomechanical Advantages and Challenges |
|
|
161 | (2) |
|
9.3 PEEK Bioactivity Advantages and Challenges |
|
|
163 | (1) |
|
9.4 PEEK in Orthopedic Implants |
|
|
163 | (6) |
|
|
169 | (1) |
|
|
170 | (3) |
|
|
173 | (10) |
|
|
173 | (10) |
|
Section IV BIOMECHANICAL-CLINICAL EVALUATION OF TRAUMA PLATING SYSTEMS |
|
|
|
10 Humerus Trauma Plating Fixation |
|
|
183 | (34) |
|
|
184 | (1) |
|
10.2 Proximal Humerus Fracture Fixation |
|
|
185 | (13) |
|
10.3 Distal Humeral Fracture Fixation |
|
|
198 | (8) |
|
|
206 | (2) |
|
|
208 | (3) |
|
|
211 | (6) |
|
|
212 | (5) |
|
11 Forearm (Radius and Ulna) Plating Fixation |
|
|
217 | (28) |
|
|
217 | (2) |
|
11.2 Biomechanics of Forearm |
|
|
219 | (1) |
|
11.3 Plating Fixation of Distal Radius Fractures |
|
|
220 | (15) |
|
11.4 Diaphyseal Plating Fracture Fixation |
|
|
235 | (1) |
|
11.5 Proximal Radius Fracture Fixation |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (3) |
|
|
241 | (4) |
|
|
241 | (4) |
|
12 Femur Trauma Plating Fixation |
|
|
245 | (32) |
|
|
246 | (1) |
|
12.2 Proximal Femur Plating Fixation |
|
|
247 | (7) |
|
12.3 Distal Femur Fracture Fixation |
|
|
254 | (9) |
|
12.4 Plating Fixation of Femur Shaft Fracture |
|
|
263 | (2) |
|
|
265 | (3) |
|
|
268 | (2) |
|
|
270 | (7) |
|
|
271 | (6) |
|
13 Tibia and Fibula Trauma Plating Fixation |
|
|
277 | (36) |
|
|
278 | (1) |
|
13.2 General Biomechanical Concept of Tibia Bone |
|
|
278 | (1) |
|
13.3 Proximal Tibia Fracture Fixation |
|
|
279 | (14) |
|
13.4 Distal Tibia Fracture Fixation |
|
|
293 | (8) |
|
13.5 Distal Fibula Fracture Fixation |
|
|
301 | (3) |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
307 | (6) |
|
|
307 | (6) |
|
14 Hand and Foot Trauma Plating Fixation |
|
|
313 | (22) |
|
|
314 | (1) |
|
14.2 Hand Plating Fixation |
|
|
314 | (6) |
|
14.3 Foot Plating Fixation |
|
|
320 | (6) |
|
|
326 | (1) |
|
|
327 | (2) |
|
|
329 | (6) |
|
|
329 | (6) |
|
15 Pelvic and Clavicle Trauma Plating Fixation |
|
|
335 | (26) |
|
|
335 | (1) |
|
15.2 Pelvic Fracture Fixation |
|
|
336 | (8) |
|
15.3 Clavicle Fracture Fixation |
|
|
344 | (6) |
|
|
350 | (2) |
|
|
352 | (1) |
|
|
353 | (8) |
|
|
354 | (7) |
|
Section V FURTHER DEVELOPMENT OF TRAUMA PLATING SYSTEM |
|
|
|
16 Further Development of Trauma Plating Fixation |
|
|
361 | |
|
|
361 | (1) |
|
16.2 Biomechanical Development Concepts |
|
|
362 | (6) |
|
16.3 Material Development Concepts |
|
|
368 | (2) |
|
16.4 Biological Development Concept |
|
|
370 | (1) |
|
16.5 Clinical Development Concept |
|
|
370 | (1) |
|
16.6 New Concept for Future Development |
|
|
370 | (9) |
|
|
379 | (2) |
|
|
381 | |
|
|
381 | (2) |
|
|
383 | (8) |
|
|
391 | |