Muutke küpsiste eelistusi

Trenchless Technology: Pipeline and Utility Design, Construction, and Renewal, Second Edition 2nd edition [Pehme köide]

  • Formaat: Paperback / softback, 576 pages, kõrgus x laius x paksus: 244x196x38 mm, kaal: 1198 g, 250 Illustrations
  • Ilmumisaeg: 08-Nov-2021
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260458733
  • ISBN-13: 9781260458732
  • Formaat: Paperback / softback, 576 pages, kõrgus x laius x paksus: 244x196x38 mm, kaal: 1198 g, 250 Illustrations
  • Ilmumisaeg: 08-Nov-2021
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260458733
  • ISBN-13: 9781260458732
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

A fully updated guide to no-dig engineering and trenchless technology

This thoroughly revised reference covers the latest techniques and materials for high-demand trenchless technology in underground projects. Written by recognized experts in the field, Trenchless Technology: Pipeline and Utility Design, Construction, and Renewal, Second Edition offers clear explanations of the full range of trenchless technologies and pertinent regulations. You will get complete details on new tools, techniques, and analysis methods and discover how to choose between them. The information contained in this guide can save you thousands of dollars in costs and weeks of surface disruptions.

Coverage includes:

  • Planning and design considerations for trenchless construction and renewal methods
  • Pipe materials
  • Horizontal auger boring
  • Pipe ramming
  • Pipe/box jacking
  • Pilot Tube Microtunneling
  • Utility tunneling
  • Direct Pipe
  • Horizontal directional drilling
  • Cured-in-place and close-fit pipes
  • Sliplining and in-line replacements
  • Lateral renewal and localized repairs
  • Modified sliplining
  • Spray applied pipe lining
  • Sewer manhole renewal
  • Thermoformed pipe
  • Innovative applications


Foreword xvii
Foreword to First Edition xix
Preface xxi
Acknowledgments xxiii
1 Overview and Comparison of Trenchless Technologies
1(24)
1.1 Introduction
1(3)
1.1.1 Summary of Trenchless Technology Benefits
2(2)
1.1.2 Trenchless Technology Market Share
4(1)
1.2 Two Main Divisions of Trenchless Technology Methods
4(1)
1.3 Trenchless Construction Methods (TCMs)
4(8)
1.3.1 Horizontal Auger Boring (HAB) Methods
5(2)
1.3.2 Microtunneling Methods (MTMs)
7(1)
1.3.3 Horizontal Directional Drilling (HDD) Methods
7(2)
1.3.4 Pipe Ramming (PR) Methods
9(1)
1.3.5 Compaction Methods (CMs)
9(1)
1.3.6 Pilot-tube Method (PTM)
10(1)
1.3.7 Direct Pipe® (DP)
11(1)
1.4 Trenchless Renewal Methods (TRMs)
12(11)
1.4.1 Cured-In-Place Pipe (CIPP)
13(2)
1.4.2 Spray-applied Pipe Lining (SAPL)
15(1)
1.4.3 Sliplining (SL)
16(1)
1.4.4 Modified Sliplining (MSL)
16(2)
1.4.5 In-line Replacement (ILR)
18(1)
1.4.6 Close-fit Pipe (CFP)
18(2)
1.4.7 Localized Repairs (LORs) or Point Source Repairs (PSRs)
20(1)
1.4.8 Thermoformed Pipe (ThP)
21(1)
1.4.9 Lateral Renewal (LR)
22(1)
1.4.10 Maintenance Hole Renewal (MHR)
22(1)
1.5 Summary
23(2)
2 Social Costs of Utility Construction: A Life Cycle Cost Approach
25(18)
2.1 Cost of a Project
25(1)
2.2 Preconstruction Costs
26(2)
2.3 Construction Costs
28(6)
2.3.1 Direct Costs
28(1)
2.3.2 Indirect (Overhead) Costs
29(1)
2.3.3 Social and Environmental Costs
29(5)
2.4 Postconstruction Costs
34(2)
2.5 Calculating Social Costs
36(1)
2.6 Estimating Cost of Traffic Disruptions
37(4)
2.6.1 Duration of the Project
37(1)
2.6.2 Cost of Fuel
38(1)
2.6.3 Cost of Travel Time
38(1)
2.6.4 Road Damage
39(1)
2.6.5 Vehicular Wear
40(1)
2.6.6 Loss of Sales Tax
40(1)
2.6.7 Loss of Productivity due to Noise and Vibration
40(1)
2.6.8 Dust
41(1)
2.7 Reducing Social Costs
41(1)
2.8 Summary
41(2)
3 Pipeline Asset Management, Condition Assessment, and Cleaning
43(60)
3.1 Background
43(3)
3.2 Asset Management
46(2)
3.3 Causes of Pipeline Deterioration
48(9)
3.3.1 Modes of Pipeline Deterioration
49(2)
3.3.2 Age of Pipe
51(1)
3.3.3 Pipe Size
52(1)
3.3.4 Pipe Section Length
52(1)
3.3.5 Gravity Pipe Gradient
53(1)
3.3.6 Gravity Pipe Joint Type
53(1)
3.3.7 Pipe Depth
53(1)
3.3.8 Surface Loading and Surface Type
53(1)
3.3.9 Frost Heave
53(1)
3.3.10 Frost Load
54(1)
3.3.11 Sewage Characteristics
54(1)
3.3.12 Soil-Pipe Interaction
54(1)
3.3.13 Pipe Wall Temperature Gradients
54(1)
3.3.14 Differential Pipe Temperature
55(1)
3.3.15 Corrosion
55(1)
3.3.16 Soil Type
55(1)
3.3.17 Soil pH
56(1)
3.3.18 Groundwater Level
56(1)
3.3.19 Overburden Pressure
56(1)
3.3.20 Temperature
56(1)
3.3.21 Precipitation (Snow or Rain)
57(1)
3.4 Pipeline Inspection: Gravity Sewer Pipe
57(16)
3.4.1 Inspecting within the Pipeline Walls
58(9)
3.4.2 Structural Condition Rating of Sewers
67(2)
3.4.3 Smoke Testing
69(4)
3.5 Pipeline Inspection: Pressure Pipe
73(4)
3.5.1 Remote Field Eddy Current/Transformer Coupling (RFEC/TC)
74(3)
3.6 Acoustic Emission Testing (AET)
77(2)
3.6.1 History
77(1)
3.6.2 Theory
78(1)
3.6.3 Applications
79(1)
3.7 Tethered and Untethered Transmission Main Leak Location
79(2)
3.7.1 History
79(1)
3.7.2 Theory
80(1)
3.7.3 Applications
80(1)
3.7.4 Satellite-Based Leak Location
81(1)
3.8 Pipeline Cleaning Methods
81(10)
3.8.1 Conventional Cleaning Methods
82(7)
3.8.2 Effectiveness 6f the Conventional Cleaning Methods
89(1)
3.8.3 Limitations of the Conventional Cleaning Methods
90(1)
3.9 Gas and Hazardous Liquid Asset Management
91(4)
3.9.1 Risk Modeling
93(1)
3.9.2 Consequence Modeling
93(2)
3.10 External Corrosion
95(1)
3.10.1 External Corrosion Control Methods
95(1)
3.10.2 External Corrosion Inspection Methods
96(1)
3.11 Internal Corrosion
96(1)
3.11.1 Internal Corrosion Control Methods
96(1)
3.11.2 Internal Corrosion Direct Assessment
96(1)
3.12 Inline Inspection
97(1)
3.13 Third Party Damage Prevention
98(1)
3.14 Surveys and Patrols
99(1)
3.14.1 Leak Surveys
99(1)
3.14.2 Aerial Patrols
100(1)
3.15 Advanced Leak Detection
100(1)
3.15.1 Case Study Pacific Gas and Electric Company
100(1)
3.16 Emerging Technologies
101(1)
3.16.1 Use of Artificial Intelligence in Damage Prevention
101(1)
3.16.2 Improving Emergency Response with Internet of Things
102(1)
3.17 Acknowledgement
102(1)
4 Design Considerations for Trenchless Pipeline Construction Methods
103(16)
4.1 Introduction
103(1)
4.2 Surface Survey
103(1)
4.3 Subsurface Investigations
104(3)
4.3.1 Existing Utilities
104(1)
4.3.2 Geotechnical Investigations
105(2)
4.4 Alignment Considerations
107(2)
4.4.1 Jacking and Receiving Shafts/Pits
108(1)
4.5 Calculating Jacking Force in Pipe Jacking and Microtunneling
109(9)
4.6 Summary
118(1)
5 Design Considerations for Trenchless Renewal Methods
119(32)
5.1 Introduction
119(1)
5.2 TRM Selection Process
119(2)
5.2.1 Initial Planning
120(1)
5.2.2 Pipeline Integrity Assessment
120(1)
5.2.3 Develop Renewal Solutions
120(1)
5.2.4 Implement and Monitor
121(1)
5.3 Selection of a Renewal Method Based on Existing Pipe Conditions
121(1)
5.4 Selection of a Renewal Method Based on Site and Project Conditions
121(1)
5.5 Selection of a Renewal Method (a Six-Step Process)
122(6)
5.6 General Design Considerations
128(2)
5.6.1 Flow Bypassing Considerations
128(1)
5.6.2 Reinstatement of Laterals
129(1)
5.6.3 Open-cut
129(1)
5.7 Structural Design of CIPP
130(21)
5.7.1 Major Design Variables
131(1)
5.7.2 Design Background
132(1)
5.7.3 Partially Deteriorated Gravity Condition
133(1)
5.7.4 Partially Deteriorated Gravity Flow CIPP Design
134(3)
5.7.5 Fully Deteriorated Gravity Condition
137(1)
5.7.6 Fully Deteriorated Gravity Flow CIPP Design
138(1)
5.7.7 Total External Pressure on CIPP
138(2)
5.7.8 Hydrostatic and Soil Loads
140(1)
5.7.9 Superimposed or Live Loads
140(6)
5.7.10 Partially Deteriorated Pressure Flow CIPP Design
146(1)
5.7.11 Fully Deteriorated Pressure Flow CIPP Design
147(1)
5.7.12 Hydraulic Design of CIPP
147(4)
6 Pipe Materials for Trenchless Technology
151(3)
6.1 Introduction
151(2)
6.1.1 Pipelines and Trenchless Technology
151(1)
6.1.2 Traditional and Modern Piping Materials
152(1)
6.2 Pipe-Soil Interaction
153(1)
7 6.2.1 Rigid Conduits
154(45)
6.2.2 Flexible Conduits
155(1)
6.2.3 Semirigid Pipe
155(1)
6.3 Pipe Selection Considerations
155(5)
6.3.1 Water System Pipelines
156(1)
6.3.2 Sewer System Pipelines
157(2)
6.3.3 Importance of a 100-Year Design Life
159(1)
6.4 Cement-Based Pipes
160(5)
6.4.1 Concrete Pipes
160(4)
6.4.2 AC Pipe
164(1)
6.5 Vitrified Clay Pipe
165(4)
6.5.1 Manufacturing
166(1)
6.5.2 Applicable Standards
166(1)
6.5.3 Joint Types
167(1)
6.5.4 Advantages and Limitations
167(2)
6.6 Plastics Pipes
169(13)
6.6.1 Properties of Viscoelastic Construction Materials
170(1)
6.6.2 PVC Pipe
171(4)
6.6.3 Polyethylene (HDPE, PE, PE4710) Pipe
175(5)
6.6.4 GRP or FRPM Pipe
180(2)
6.7 Metallic Pipes
182(15)
6.7.1 Ductile Iron Pipe
183(6)
6.7.2 Steel Pipe
189(8)
6.8 Corrosion Protection
197(1)
6.9 Acknowledgments
198(1)
7 Horizontal Auger Boring (Bore and Jack)
199(18)
7.1 Introduction
199(1)
7.2 Brief History
199(1)
7.3 Method Description
200(10)
7.3.1 Track-Type Horizontal Auger Boring Method
200(2)
7.3.2 Jobsite Preparation
202(2)
7.3.3 Bore Pit Excavation and Preparation
204(2)
7.3.4 Setting the Boring Machine
206(1)
7.3.5 Preparation of Casing
206(1)
7.3.6 Installation of Casing
207(2)
7.3.7 Carrier Pipe Installation Using Blocking
209(1)
7.3.8 Grouting of Casing
210(1)
7.3.9 Site Restoration
210(1)
7.4 Cradle-Type Horizontal Auger Boring
210(1)
7.5 Main Features and Application Range
211(2)
7.5.1 Diameter Range
211(1)
7.5.2 Drive Length
211(1)
7.5.3 Type of Casing
212(1)
7.5.4 Workspace Requirements
212(1)
7.5.5 Soil Conditions
212(1)
7.5.6 Productivity
213(1)
7.5.7 Accuracy
213(1)
7.5.8 Major Advantages
213(1)
7.5.9 Major Limitations
213(1)
7.6 Guidance Systems 1
213(1)
7.6.1 Waterline System (Grade Only)
213(1)
7.6.2 Mechanical Line and Grade Control
214(1)
7.6.3 Electronic Line and Grade Control
214(1)
7.6.4 Walkover Systems
214(1)
7.7 Hybrid Methods
214(3)
7.7.1 Pilot Tube Method (PTM)
215(1)
7.7.2 Controlled Boring System: Steerable Line and Grade System
215(1)
7.7.3 Steel Pipe Interlocking Joining System
215(1)
7.7.4 Laser Guided Tunnel Attachment
215(1)
7.7.5 Mechanical Line and Grade Control Head
215(1)
7.7.6 Electronic Line and Grade Control Head
215(2)
8 Pipe Ramming
217(8)
8.1 Introduction
217(1)
8.2 Method Description
217(4)
8.3 Main Features and Application Range
221(3)
8.3.1 Diameter Range
221(1)
8.3.2 Drive Length
222(1)
8.3.3 Type of Casing
222(1)
8.3.4 Required Working Space
222(1)
8.3.5 Soil Conditions
222(1)
8.3.6 Productivity
223(1)
8.3.7 Accuracy
223(1)
8.3.8 Major Advantages
223(1)
8.3.9 Major Limitations
223(1)
8.4 Effects of Pipe Ramming on Surrounding Environment
224(1)
9 Pipe/Box Jacking and Utility Tunneling
225(16)
9.1 Introduction to Pipe Jacking
225(1)
9.2 Method Description
226(7)
9.3 Main Features and Application Range
233(2)
9.3.1 Diameter Range
233(1)
9.3.2 Drive Length
233(1)
9.3.3 Type of Pipe
233(1)
9.3.4 Required Working Space
234(1)
9.3.5 Soil Condition
234(1)
9.3.6 Productivity
234(1)
9.3.7 Accuracy
234(1)
9.3.8 Major Advantages
235(1)
9.3.9 Major Limitations
235(1)
9.4 Introduction to Utility Tunneling
235(1)
9.5 Method Description
236(2)
9.5.1 Soil Excavation
236(1)
9.5.2 Spoil Removal
237(1)
9.5.3 Steering Control and Tunneling (Shield) Advancement
237(1)
9.5.4 Liner Installation
238(1)
9.6 Main Features and Application Range
238(3)
9.6.1 Diameter Range
239(1)
9.6.2 Productivity and Special Concerns
239(1)
9.6.3 Soil Conditions
240(1)
9.6.4 Emerging Technologies
240(1)
10 Horizontal Directional Drilling
241(40)
10.1 Introduction and Background
241(5)
10.2 HDD Classifications
246(2)
10.3 Method Description
248(16)
10.3.1 Fluid-Assisted Mechanical Drilling
248(1)
10.3.2 Drilling Process
249(3)
10.3.3 HDD Tracking and Locating Systems
252(6)
10.3.4 Walkover System Operation
258(6)
10.4 Main HDD Features and Application Range
264(16)
10.4.1 Diameter Range
264(1)
10.4.2 Depth of Installation
264(1)
10.4.3 Drive Length
265(1)
10.4.4 Types of Pipes
265(1)
10.4.5 Required Working Space
265(1)
10.4.6 Soil Conditions
265(1)
10.4.7 Productivity
265(1)
10.4.8 Accuracy
265(1)
10.4.9 Principles of Drilling Fluids for HDD
266(10)
10.4.10 Major HDD Advantages
276(1)
10.4.11 Major HDD Limitations
276(1)
10.4.12 Potential Problems
276(2)
10.4.13 Pipe Materials
278(2)
10.5 Acknowledgment
280(1)
11 Microtunneling Methods
281(14)
11.1 Introduction
281(1)
11.1.1 History
281(1)
11.2 Method Description
282(8)
11.2.1 Slurry MTBM
282(2)
11.2.2 Jacking System
284(1)
11.2.3 Spoil Removal System
285(1)
11.2.4 Guidance and Remote-Control System
286(3)
11.2.5 Active Direction Control
289(1)
11.2.6 Jacking Pipe
290(1)
11.3 Microtunneling Process
290(2)
11.4 Main Features and Application Range
292(3)
11.4.1 Diameter Range
292(1)
11.4.2 Depth of Installation
292(1)
11.4.3 Drive Length
292(1)
11.4.4 Required Working Space
292(1)
11.4.5 Soil Conditions
293(1)
11.4.6 Productivity
293(1)
11.4.7 Accuracy
293(1)
11.4.8 Major Advantages
293(1)
11.4.9 Major Limitations
294(1)
12 Pilot Tube
295(10)
12.1 Introduction
295(1)
12.2 Method Description
295(8)
12.2.1 Different Variations of PTM
302(1)
12.3 Main Features and Application Range
303(1)
12.4 Advantages
304(1)
12.5 Limitations
304(1)
12.6 Acknowledgment
304(1)
13 Direct Pipe
305(22)
13.1 Introduction and Background
305(1)
13.2 Method Description
306(4)
13.2.1 Direct Pipe Equipment
307(3)
13.3 Main Features and Application Range
310(3)
13.3.1 Diameter Range and Drive Length
310(1)
13.3.2 Type of Casing
310(1)
13.3.3 Workspace Requirements
310(1)
13.3.4 Soil Conditions
311(1)
13.3.5 Productivity
311(1)
13.3.6 Accuracy
311(1)
13.3.7 Major Advantages
312(1)
13.3.8 Major Limitations
312(1)
13.4 Hydraulic Fracture Analysis for Direct Pipe
313(1)
13.4.1 Formation Limit Pressure for Direct Pipe Installation
313(1)
13.4.2 Annular Fluid Pressure for Direct Pipe Installation
313(1)
13.5 Case Study
314(12)
13.5.1 Aquashicola Creek Crossing Construction (Pennsylvania)
314(6)
13.5.2 Sabine Neches Direct Pipe Project (Texas and Louisiana)
320(4)
13.5.3 Oyster Creek Direct Pipe Project (Texas)
324(2)
13.6 Review Questions
326(1)
13.7 Acknowledgments
326(1)
14 Cured-in-Place-Pipe
327(16)
14.1 Introduction
327(1)
14.2 Site Compatibility and Applications
327(1)
14.3 Main Characteristics
328(1)
14.4 Method Description
329(4)
14.4.1 Initial Setup: Cleaning, Televising, and Resin Impregnation (Wet-Out Process)
329(1)
14.4.2 Installation
330(2)
14.4.3 Curing
332(1)
14.4.4 Final Steps
333(1)
14.5 Major Advantages
333(1)
14.6 Major Limitations
334(1)
14.7 Case Study
334(9)
14.7.1 Introduction and Overview
334(2)
14.7.2 Predesign Field Investigations
336(1)
14.7.3 Evaluation of Optional Technologies
337(1)
14.7.4 Project Design, Specifications, and QA/QC
338(3)
14.7.5 Project Results
341(2)
15 Sliplining
343(12)
15.1 Introduction
343(1)
15.2 Site Compatibility and Applications
343(1)
15.3 Main Characteristics
344(1)
15.4 Sliplining Methods
344(3)
15.4.1 Continuous Sliplining
344(2)
15.4.2 Segmental Sliplining
346(1)
15.5 Installation
347(2)
15.5.1 Installation: Continuous Sliplining
347(1)
15.5.2 Installation: Segmental Sliplining
348(1)
15.5.3 Connecting Service Laterals
348(1)
15.5.4 Grouting
348(1)
15.6 Design Considerations
349(1)
15.7 Sliplining Gas Lines
350(1)
15.8 Advantages
351(1)
15.9 Limitations
351(1)
15.10 Case Study: Large Diameter Segmental Sliplining
351(4)
16 Close-fit Pipe
355(8)
16.1 Introduction
355(3)
16.1.1 Primary Characteristics
355(3)
16.2 Close-fit Pipe Applications
358(1)
16.3 Method Description
358(3)
16.3.1 Preliminary Evaluation
359(1)
16.3.2 Preparatory Work
359(1)
16.3.3 Installation Phase
360(1)
16.3.4 Project Inspection and Delivery
360(1)
16.4 Quality Documentation
361(1)
16.5 Advantages
361(1)
16.6 Limitations
362(1)
17 In-line Replacement
363(12)
17.1 Introduction
363(2)
17.1.1 Pipe Bursting (PB)
363(1)
17.1.2 Pipe Removal (PR)
364(1)
17.2 Pipe Bursting Methods
365(3)
17.2.1 Pneumatic Pipe Bursting (PB-PN)
365(1)
17.2.2 Static Pipe Bursting (PB-ST)
366(1)
17.2.3 Pipe Splitting (PB-PS)
366(1)
17.2.4 Pipe Insertion (PB-PI)
367(1)
17.3 Pipe Removal Methods
368(2)
17.3.1 Pipe Reaming (PR-PR)
368(1)
17.3.2 Pipe Eating (PR-PE)
369(1)
17.3.3 Pipe Ejection or Extraction (PR-PX)
369(1)
17.4 Method Applicability
370(2)
17.4.1 Range of Applications
371(1)
17.4.2 Unfavorable Conditions
371(1)
17.5 Construction Considerations
372(1)
17.5.1 Service Laterals
372(1)
17.5.2 Insertion and Reception Pits
372(1)
17.5.3 Bursting Operation
373(1)
17.5.4 Reconnection of Service
373(1)
17.6 Advantages
373(1)
17.7 Limitations
374(1)
18 Service Lateral Renewal
375(10)
18.1 Introduction
375(2)
18.2 Service Lateral Renewal Methods
377(6)
18.2.1 General Renewal or Repair Steps
378(1)
18.2.2 Lateral Cured-in-Place Pipe (L-CIPP)
378(3)
18.2.3 Lateral Pipe Bursting (L-PB)
381(1)
18.2.4 Lateral Thermoformed Pipe (L-ThP)
381(1)
18.2.5 Lateral Grouting and Spray Applied Pipe Lining (SAPL)
382(1)
18.2.6 Other Lateral Renewal Considerations
383(1)
18.3 Advantages
383(1)
18.4 Limitations
383(2)
19 Localized Repair
385(16)
19.1 Introduction
385(1)
19.2 Primary Characteristics
385(1)
19.3 Robotic Repairs
386(3)
19.3.1 Primary Characteristics
386(2)
19.3.2 Method Description
388(1)
19.4 Grouting
389(5)
19.4.1 Primary Characteristics
389(1)
19.4.2 Chemical Grouting
389(3)
19.4.3 Resin Injection System
392(1)
19.4.4 Fill-and-Drain Systems
392(1)
19.4.5 Cement Grouting
393(1)
19.5 Internal Seal
394(3)
19.5.1 Primary Characteristics
394(1)
19.5.2 Mechanical Joint Sealing
394(1)
19.5.3 Method Description
395(2)
19.6 Point CIPP
397(4)
19.6.1 Primary Characteristics
397(1)
19.6.2 Method Description
398(3)
20 Modified Sliplining
401(18)
20.1 Introduction
401(1)
20.2 Spiral Wound Lining (SWL)
401(4)
20.2.1 Primary Characteristics
402(1)
20.2.2 Method Description
402(2)
20.2.3 Advantages
404(1)
20.2.4 Limitations
404(1)
20.3 Panel Lining (PL)
405(7)
20.3.1 Background
405(1)
20.3.2 Primary Characteristics
405(1)
20.3.3 Panel Lining Applications
406(1)
20.3.4 Method Description
407(4)
20.3.5 Advantages
411(1)
20.3.6 Limitations
411(1)
20.4 Fiber Reinforced Polymer (FRP) Linings
412(6)
20.4.1 Introduction and Background
412(1)
20.4.2 Preapplication Process
412(1)
20.4.3 Installation of FRP Lining
413(1)
20.4.4 Design Principles
413(1)
20.4.5 Initial Setup, Surface Preparation, and/or Repairs
414(1)
20.4.6 Sealing of the Substrate Surface
414(1)
20.4.7 Cured-in-Place FRP Liner Installation
414(2)
20.4.8 FRP Liner Curing
416(1)
20.4.9 Application of Top Coats
416(1)
20.4.10 FRP Installation Inspection
416(1)
20.4.11 Primary Characteristics
417(1)
20.4.12 Advantages
417(1)
20.4.13 Limitations
418(1)
20.5 Acknowledgment
418(1)
21 Spray Applied Pipe Linings
419(16)
21.1 Introduction
419(1)
21.2 Material Type and Purpose
419(4)
21.2.1 Ideal Properties for Liner Materials
420(1)
21.2.2 Cementitious
420(1)
21.2.3 Polymeric
421(2)
21.3 Installation Process
423(8)
21.3.1 Surface Preparation
423(2)
21.3.2 Repair Materials
425(1)
21.3.3 Application Equipment and Process
426(5)
21.4 Inspection and Testing
431(3)
21.4.1 Visual Inspection
431(1)
21.4.2 Coating Thickness
431(1)
21.4.3 Pinholes
432(1)
21.4.4 Adhesion
432(1)
21.4.5 Vacuum and Exfiltration Testing
433(1)
21.5 Acknowledgment
434(1)
22 Thermoformed Pipe
435(8)
22.1 Introduction
435(2)
22.1.1 Primary Characteristics
435(2)
22.2 Thermoformed Pipe Applications
437(1)
22.3 Construction Considerations
438(3)
22.3.1 General
438(1)
22.3.2 Preliminary Evaluation and Inspection
439(1)
22.3.3 Preparatory Work
439(1)
22.3.4 Installation Phase
440(1)
22.3.5 Project Inspection and Delivery
441(1)
22.4 Quality Assurance and Documentation
441(1)
22.5 Advantages
441(1)
22.6 Limitations
442(1)
23 Sewer Maintenance Hole Renewal
443(24)
23.1 Introduction
443(1)
23.2 Maintenance Hole Components and Typical Problems
444(2)
23.3 Maintenance Hole Inspection and Safety Issues
446(2)
23.4 Classification of Maintenance Hole Problems and Selection of Proper Method
448(11)
23.4.1 Type I Problems: Frame and Cover
448(4)
23.4.2 Type II Problems: Structural Defects
452(2)
23.4.3 Type III Problems: Corrosion
454(3)
23.4.4 Type IV Problems: Severe Structural Damage
457(2)
23.5 Decision Support Tool for Maintenance Hole Rehabilitation
459(3)
23.6 Summary of Maintenance Hole Renewal Methods
462(2)
23.7 Advantages and Limitations of Maintenance Hole Renewal Methods
464(3)
Glossary 467(30)
Acronyms and Abbreviations 497(8)
Organizations Related to Trenchless Technology 505(4)
Conversion Table 509(2)
Bibliography 511(8)
References 519(4)
Index 523
Director, Center for Underground Infrastructure Research (CUIR) University of Texas at Arlington, Texas