Muutke küpsiste eelistusi

Trends in Computational Nanomechanics: Transcending Length and Time Scales [Kõva köide]

  • Kõva köide
  • Hind: 280,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 329,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics.



This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.
Hybrid Quantum/Classical Modeling of Material Systems: The ``Learn on the Fly'' Molecular Dynamics Scheme
1(24)
Gianpietro Moras
Rathin Choudhury
James R. Kermode
Gabor Csanyi
Michael C. Payne
Alessandro De Vita
Introduction
1(1)
The LOTF Scheme
2(8)
Reconciling the Boundary
2(2)
Evaluation of the QM Forces
4(1)
Force Matching
5(2)
The LOTF Predictor-Corrector Scheme
7(3)
Selection of the QM Region: An Hysteretic Algorithm
10(5)
A Screw Dislocation Study
11(1)
Brittle Fracture
12(3)
Towards Chemical Complexity: Hydrogen-Induced Platelets in Silicon
15(10)
The Atom-Resolved Stress Tensor
18(3)
References
21(4)
Multiscale Molecular Dynamics and the Reverse Mapping Problem
25(36)
Bernd Ensing
Steven O. Nielsen
Introduction
25(5)
Atomistic and Coarse-Grained Molecular Dynamics
28(1)
Mapping Between Different Representations, or the Reverse Mapping Problem
29(1)
Adaptive Multiscale Molecular Dynamics
30(13)
Stage 1: Coupling Atomistic and Coarse-Grained Regions
31(6)
Equations of Motion
37(1)
Stage 2: Freezing the Intra-Bead Motions
38(2)
Case Study 1: Liquid Methane
40(2)
Other Adaptive Multiscale Implementations
42(1)
Reverse Mapping Through Rigid Body Rotation
43(10)
Rigid Body Rotational Optimization
44(3)
Rigid Body Rotational Dynamics
47(1)
Coupling Between the Rotational Dynamics and Coarse-Grained Molecular Dynamics
48(2)
Case Study 2: Polyethylene Chain
50(3)
Combining Rotational Reverse Mapping with Hybrid MD
53(4)
Case Study 3: Hybrid Simulation of a Polyethylene Chain
54(3)
Summary
57(4)
References
58(3)
Transition Path Sampling Studies of Solid-Solid Transformations in Nanocrystals under Pressure
61(24)
Michael Grunwald
Christoph Dellago
Rare Events in Computer Simulations
61(3)
Transition Path Sampling
64(10)
The Transition Path Ensemble
64(2)
Monte Carlo in Trajectory Space
66(3)
Analyzing Trajectories
69(2)
Calculating Rate Constants
71(3)
A TPS Algorithm for Nanocrystals in a Pressure Bath
74(4)
Ideal Gas Pressure Bath
74(3)
Simple Shooting Moves
77(1)
The Wurtzite to Rocksalt Transformation in CdSe Nanocrystals
78(3)
Straightforward MD Simulations
79(2)
TPS Reveals the Main Mechanism
81(1)
Concluding Remarks
81(4)
References
82(3)
Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids
85(50)
Simon P.A. Gill
Introduction
85(2)
Molecular Dynamics and its Applicability to the Simulation of Heat Transport
87(12)
Introduction to Equilibrium MD
87(2)
Temperature Control
89(1)
Lattice Vibrations
90(1)
The Quantum Model of Phonon Heat Transport
91(4)
The Classical Limit
95(3)
Heat Transport in Metals
98(1)
Nonequilibrium Molecular Dynamics
99(10)
The Green-Kubo Method
100(1)
The Direct Method
100(6)
Size Effects
106(3)
Isothermal Concurrent Multiscale Methods
109(13)
Coarse-Grained Dynamics
111(4)
Coarse-Grained Thermal Properties
115(2)
Boundary Conditions for the Atomistic/Continuum Interface
117(4)
Isothermal Dynamic Multiscale Models
121(1)
Non-Isothermal Concurrent Multiscale Methods
122(8)
Quasi-Static Phonon Models for Insulators
123(3)
Dynamic Phonon Models for Insulators
126(1)
Quasi-Static Models for Metals
127(1)
Dynamic Coarse-Grained Models for Metals
128(1)
Conclusions
129(1)
References
130(5)
A Multiscale Methodology to Approach Nanoscale Thermal Transport
135(16)
Ishwar K. Puri
Sohail Murad
Introduction
135(3)
Interfacial Resistance
136(1)
Phonon Behavior Through Acoustic Waves
136(1)
Strategies to Modulate the Interfacial Resistance
137(1)
Role of Surface Modifications
137(1)
Continuum Limits
138(1)
Multiscale Investigations
139(7)
Atomistic and Multiscale Simulations
139(2)
Molecular Dynamics (MD) Simulations
141(1)
Thermal Lattice Boltzmann Method (LBM)
142(1)
Hybrid Multiscale Methodology
143(1)
Coupling MD and LBM
144(2)
Example Problems
146(5)
References
146(5)
Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals
151(22)
Virginie Dupont
Frederic Sansoz
Introduction
151(3)
Atomistic Modeling of Nanoscale Contact in Nanocrystalline Films
154(7)
Simulation Methods
155(1)
Modeling of Spherical/Cylindrical Contact in Nanocrystalline Metals
156(2)
Calculations of Local Stresses and Mean Contact Pressures
158(2)
Tools for the Visualization of Defects and Grain Boundaries
160(1)
Effects of Interatomic Potentials on Equilibrium Microstructures
161(3)
Effects of a Grain Boundary Network on Incipient Plasticity During Nanoscale Contact
164(2)
Mechanisms of Grain Boundary Motion During Contact Plasticity
166(4)
Concluding Remarks
170(3)
References
171(2)
Silicon Nanowires: From Empirical to First Principles Modeling
173(20)
Ricardo W. Nunes
Joao F. Justo
Introduction
173(3)
Methodological Considerations
176(4)
Empirical Models
177(1)
Semi-Empirical Models
178(2)
Structural Properties: Application of Empirical Methods
180(4)
Morphology of Thin Silicon Nanowires: Application of Tight Binding and First Principles Methods
184(4)
Conclusions
188(5)
References
189(4)
Multiscale Modeling of Surface Effects on the Mechanical Behavior and Properties of Nanowires
193(38)
Harold S. Park
Patrick A. Klein
Introduction
193(3)
Methodology
196(12)
Continuum Mechanics Preliminaries
196(1)
Surface and Bulk Energy Densities
197(2)
Formulation for Embedded Atom Method/FCC Metals
199(4)
Formulation for Diamond Cubic Lattices
203(5)
Finite Element Formulation and Implementation
208(2)
Variational Formulation
208(1)
Finite Element Eigenvalue Problem for Nanowire Resonant Frequencies
209(1)
Applications of Surface Cauchy-Born Model
210(1)
Direct Surface Cauchy-Born/Molecular Statics Comparison
210(2)
Surface Stress Effects on the Resonant Properties of Silicon Nanowires
212(7)
Constant Cross Sectional Area
215(2)
Constant Length
217(1)
Constant Surface Area to Volume Ratio
218(1)
Discussion and Analysis
219(4)
Comparison to Experiment
221(2)
Conclusions and Perspectives
223(8)
References
224(7)
Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods
231(24)
C.V. Ciobanu
C.Z. Wang
D.P. Mehta
K.M. Ho
Introduction
232(2)
Reconstruction of Silicon Surfaces as a Problem of Global Optimization
234(9)
The Parallel-Tempering Monte Carlo
235(4)
Genetic Algorithm
239(2)
Selected Results on Si(114)
241(2)
The Structure of Freestanding Nanowires
243(7)
A Genetic Algorithm for 1-D Nanowire Systems
243(3)
Magic Structures of H-Passivated Si-[ 110] Nanowires
246(1)
Growth of 1-D Nanostructures into Global Minima Under Radial Confinement
247(3)
Future Directions
250(5)
References
251(4)
Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems
255(42)
Byeong-Woo Jeong
Susan B. Sinnott
Introduction
255(2)
Computational Details
257(7)
Interatomic Potentials
257(3)
Important Approximations
260(4)
Mechanical Behavior of Nanotubes
264(27)
Tensile Behavior
265(6)
Compressive Behavior
271(5)
Bending Behavior
276(4)
Torsional Behavior
280(11)
Conclusions
291(6)
References
292(5)
Stick-Spiral Model for Studying Mechanical Properties of Carbon Nanotubes
297(26)
Tienchong Chang
Introduction
297(1)
Carbon Nanotubes and Their Mechanical Properties
298(4)
Carbon Nanotubes (CNTs)
298(2)
Mechanical Properties of CNTs
300(1)
Theoretical Modeling on Geometry Dependent Mechanical Properties of CNTs
300(2)
Stick-Spiral Model For Carbon Nanotubes
302(13)
Model Description
302(2)
Governing Equations of the Stick-Spiral Model
304(2)
Linear Stick-Spiral Model and its Applications
306(4)
Nonlinear Stick-Spiral Model and its Applications
310(5)
Concluding Remarks
315(8)
References
317(6)
Potentials for van der Waals Interaction in Nano-Scale Computation
323(12)
J. Xiao
W. Zhou
Y. Huang
J.M. Zuo
K.C. Hwang
Introduction
323(1)
Potentials for van der Waals Interaction
324(1)
The Lennard-Jones Potential
324(1)
The Registry-Dependent Interlayer Potential
324(1)
Computational Method
325(2)
Comparison Between the Two Potentials
327(5)
On the Lattice Registry Effect
327(2)
On the Deformation of Carbon Nanotubes
329(3)
Concluding Remarks
332(3)
References
332(3)
Electrical Conduction in Carbon Nanotubes under Mechanical Deformations
335(32)
A. Pantano
Introduction
335(4)
Modeling Procedures
339(6)
The Carbon Nanotube Wall
340(2)
Initial Internal Stress State
342(1)
Construction of Special Interaction Elements
343(1)
Model of the Inter-Layer Shear Resistance
344(1)
Electrical Transport Model
344(1)
Numerical Results
345(18)
Bending of SWNTs
345(1)
Tube-Tube-Substrate Interaction
346(1)
Deformation of MWNTs Under Bending
347(4)
Laterally-Squeezed (8, 8) SWNT
351(2)
Bent (10, 0) SWNT
353(1)
Simulation of Laboratory Experiments on a MWNT
354(2)
Effect of the Outer Diameter on the Conductance of MWNTs Under Bending
356(4)
Effect of the Outer Diameter on the Conductance of MWNTs Under Stretching
360(1)
Effect of Current Saturation - Non-Linear I-V Response
361(2)
Conclusions
363(4)
References
363(4)
Multiscale Modeling of Carbon Nanotubes
367(22)
Yuzhou Sun
K.M. Liew
Introduction
367(2)
Multiscale Coupling Approaches
369(3)
Quasi-Continuum Method
369(1)
Bridging Domain Method
370(1)
Bridging Scale Method
371(1)
Brenner Potential
372(2)
An Atomic Simulation Method
374(2)
A Higher-Order Continuum Model
376(5)
Higher-Order Gradient Continuum
377(2)
Constitutive Relationship
379(1)
Mesh-Free Numerical Simulation
380(1)
Multiscale Coupling Scheme
381(2)
Multiscale Computational Examples
383(3)
Bending Test
383(1)
Tensile Failure of SWCNTs with a Single-Atom Vacancy Defect
384(2)
Summary
386(3)
References
387(2)
Quasicontinuum Simulations of Deformations of Carbon Nanotubes
389(32)
Seyoung Im
Sungjin Kwon
Jong Youn Park
Introduction
389(2)
Quasicontinuum Method for Carbon Nanotubes
391(16)
Deformations of Single-Walled CNTs
392(2)
Bravais Multilattice and Inner Displacement
394(2)
Interpolation Function
396(2)
Summation and Minimization of Energy
398(4)
Adaptive Meshing Scheme
402(1)
Deformation of Multiwalled Carbon Nanotubes (MWCNTs)
402(1)
Numerical Examples
403(4)
QC Method for CNTS by Use of Variable-Node Elements
407(6)
Variable Node Elements for QC
407(4)
Numerical Examples
411(2)
Conclusions
413(8)
References
419(2)
Electronic Properties and Reactivities of Perfect, Defected, and Doped Single-Walled Carbon Nanotubes
421(52)
Wei Quan Tian
Lei Vincent Liu
Ya Kun Chen
Yan Alexander Wang
Scope
421(1)
Introduction
422(1)
Theoretical Methods
423(5)
First-Principles Calculations
423(1)
Semiempirical Quantum Mechanical Methods
424(2)
Density-Functional Theory
426(1)
Oniom Model
426(1)
Molecular Dynamical Simulations
427(1)
Single-Walled Carbon Nanotubes
428(3)
Perfect SWCNT Rods
428(3)
Open-End SWCNT Segment
431(1)
Vacancy-Defected Fullerenes and Swcnts
431(14)
Vacancy-Defected Fullerenes
432(7)
Vacancy-Defected SWCNTs
439(6)
Doped SWCNTs
445(8)
B- and N-Doped SWCNTs
445(1)
Ni-, Pd-, and Sn-Doped SWCNTs
445(3)
Chalcogen Se- and Te-Doped SWCNT
448(1)
Pt-Doped SWCNTs
448(3)
Gas Adsorptions on Pt-Doped SWCNTs
451(2)
Chemical Reactions of Vacancy-Defected SWCNTs
453(11)
Computational Details and Model Selection
453(1)
Chemical Reaction of NO with Vacancy-Defected SWCNT
454(3)
Chemical Reaction of O3 with Vacancy-Defected SWCNT
457(7)
Conclusions and Outlooks
464(9)
References
465(8)
Multiscale Modeling of Biological Protein Materials - Deformation and Failure
473(62)
Sinan Keten
Jeremie Bertaud
Dipanjan Sen
Zhiping Xu
Theodor Ackbarow
Markus J. Buehler
Introduction
473(6)
Nanomechanics of Protein Materials: Challenges and Opportunities
475(1)
Strategy of Investigation
476(1)
Impact of Materiomics
477(2)
Transfer from Biological Protein Materials to Synthetic Materials
479(1)
Atomistic Simulation Methods
479(18)
Molecular Dynamics Formulation
479(3)
Charmm Force Field
482(2)
ReaxFF Force Field
484(2)
Coarse-Graining Approaches of Protein Structures
486(11)
Theoretical Strength Models of Protein Constituents
497(16)
Strength of a Single Bond
497(3)
Strength of Complex Molecular Bonds
500(5)
Size Effects in H-Bond Clusters
505(1)
Asymptotic Strength Model for Alpha Helix Protein Domains
506(7)
Complementary Experimental Methods
513(2)
Structural Characterization
513(1)
Manipulation and Mechanical Testing
513(2)
Synthesis Methods for Hierarchical Materials
515(1)
De Novo Design of Bioinspired and Biomimetic Nanomaterials
515(7)
Development of Bioinspired Metallic Nanocomposites
518(1)
Nanostructure Design Effects Under Tensile and Shock Loading
519(2)
Outlook and Opportunities
521(1)
Discussion and Conclusion
522(13)
References
524(11)
Computational Molecular Biomechanics: A Hierarchical Multiscale Framework with Applications to Gating of Mechanosensitive Channels of Large Conductance
535(22)
Xi Chen
Qiang Cui
Introduction
535(1)
Brief Overview of Mechanosensitive (Ms) Channels
536(5)
Brief Overview of Mechanosensitive (Ms) Channels
536(3)
Brief Overview of Mechanosensitive (Ms) Channels
539(1)
Brief Overview of Mechanosensitive (Ms) Channel
540(1)
Continuum-Based Approach: Model and Methods for Studying Mscl
541(2)
Gating Mechanisms of Mscl and Insights for Mechanotransduction
543(9)
Effect of Different Loading Modes
543(5)
Effects of Structural Motifs
548(1)
Co-operativity of MS Channels
549(2)
Large Scale Simulations of Lab Experiments
551(1)
Future Look and Improvements of Continuum Framework
552(2)
Conclusion
554(3)
References
555(2)
Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks
557(46)
E.A. Sander
A.M. Stein
M.J. Swickrath
V.H. Barocas
Introduction
557(2)
Biopolymers of Interest
559(8)
Intracellular Networks
559(2)
Extracellular Networks
561(2)
The Mechanical Behavior of Biopolymers
563(4)
Network Imaging, Extraction, and Generation
567(5)
Imaging
567(1)
Network Extraction
568(1)
Model Network Generation
569(1)
Network Generation via Energy Minimization
570(2)
General Modeling Approaches for Biopolymer Networks
572(10)
Definitions
572(1)
Affine Theory
573(1)
Nonaffine Models
574(4)
Finite Strain
578(1)
Bridging Scales - Multiscale Behavior of Networks
578(4)
Applications to Biopolymers
582(6)
Actin
582(1)
Microtubules, IFs, and the Cytoskeleton
583(1)
Spectrin
584(1)
Collagen I
585(3)
Type IV Collagen
588(1)
Fibronectin, Laminin, and the ECM
588(1)
Summary
588(1)
Nomenclature
589(14)
References
591(12)
Index 603
Dr. Traian Dumitrica received a doctorate in physics from Texas A&M University in 2000. Since then he has worked at Rice University, Freie Universitaet Berlin, and Universitaet Kassel. He joined the University of Minnesota faculty in 2005. His research focuses in understanding the mechanical properties of materials using atomistic computational methods. System of interest include carbon nanotubes, silicon nanoparticles, and coherent phonons in semiconductors.