Muutke küpsiste eelistusi

Tunable Laser Applications, Second Edition 2nd New edition [Kõva köide]

Edited by (Interferometric Optics, Rochester, New York, USA)
  • Formaat: Hardback, 480 pages, kõrgus x laius: 235x156 mm, kaal: 794 g, 26 Halftones, black and white; 34 Tables, black and white; 2 Illustrations, color; 149 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 26-Aug-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420060090
  • ISBN-13: 9781420060096
Teised raamatud teemal:
  • Kõva köide
  • Hind: 193,60 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 480 pages, kõrgus x laius: 235x156 mm, kaal: 794 g, 26 Halftones, black and white; 34 Tables, black and white; 2 Illustrations, color; 149 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 26-Aug-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420060090
  • ISBN-13: 9781420060096
Teised raamatud teemal:
Tunability has added an important dimension to a variety of laser devices and led to new systems and applications. From laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser.



Incorporating nine new chapters since the first edition, Tunable Laser Applications, Second Edition reflects the significant developments in tunable lasers that have taken place over the past decade. Internationally recognized experts describe the physics and architecture of widely applied tunable laser sources, emphasizing biomedical applications of fiber lasers and ultrashort pulsed lasers, as well as laser isotope separation and cancer photodynamic therapy.



The Second Edition covers:







Advances in optical parametric oscillators Developments in tunable semiconductor lasers Solid-state dye lasers Laser isotope separation using diode lasers Medical applications of table-top coherent X-rays



Outlining applications in biology and medicine, this second edition offers a much-needed account of the most promising tunable laser applications.
List of Figures
xiii
List of Tables
xxiii
Note to the First Edition from the Series Editor xxv
Preface to the Second Edition xxvii
About the Editor xxix
Contributors xxxi
Introduction
1(14)
F.J. Duarte
Introduction
1(3)
Tunable Laser Complementarity
4(1)
Tunable Laser Applications
5(1)
Tunable Laser Applications: First Edition
6(1)
Focus of This Book
6(9)
Acknowledgments
9(1)
References
9(6)
Spectroscopic Applications of Tunable Optical Parametric Oscillators
15(82)
B.J. Orr
Y. He
R.T. White
Introduction: ``Good-Bye to Ti: and Dye''?
16(1)
Optical Parametric Devices: How They Operate
17(11)
Optical Parametric Processes
17(5)
Χ(2)-Based Optical Parametric Gain and Amplification
22(3)
Choice of Optical Parametric Gain Medium
25(2)
Operating Regimes for Optical Parametric Processes
27(1)
Elements of Optical Parametric Oscillator Design
28(6)
Nanosecond-Pulsed Optical Parametric Oscillator
29(1)
Continuous-Wave Optical Parametric Oscillators
30(1)
Ultrafast Optical Parametric Oscillators
31(2)
Optical Parametric Devices for Spectroscopic Applications
33(1)
Optical Bandwidth Control in Nanosecond-Pulsed OPOs
34(16)
Factors Influencing Optical Bandwidth and Tunability
35(3)
Injection-Seeded Pulsed OPOs: Early Days
38(1)
Historical Overview
38(1)
Mechanism of Injection-Seeded OPOs
39(1)
Passively Seeded OPO Cavities
40(1)
Multiplex and Multiwavelength Seeded OPOs
41(1)
Injection-Seeded Pulsed OPOs: Recent Progress
42(1)
Actively Seeded OPO Cavities
42(2)
Intensity-Dip OPO Cavity Control
44(1)
Self-Adaptive Tunable OPO
44(2)
Chirp-Controlled, Injection-Seeded OPOs
46(3)
Dynamics of SLM Pulsed OPO Operation
49(31)
Spectroscopic Measurements Using OPOs
50(20)
Spectroscopic Verification of OPO Performance
50(7)
OPO-Spectroscopic Sensing of Atoms and Molecules
57(1)
Fundamental OPO Spectroscopy of Atoms, Molecules, and Ions
57(2)
OPO Applications in Atmospheric Sensing
59(2)
OPO Applications in Industrial and Environmental Monitoring
61(4)
CARS Microscopy: A Biomedical Application of OPOs
65(1)
Background to CARS Microscopy
65(1)
Instrumentation for CARS Microscopy
66(1)
Challenges for CARS Microscopy
66(2)
OPO Systems for CARS Microscopy
68(2)
Concluding Remarks: New Frontiers for OPO Spectroscopy
70(27)
Prospects for Orientation-Patterned GaAs
70(1)
Backward (Mirrorless) OPOs
70(1)
Terahertz Waves from OPGs and OPOs
71(1)
Photonic Crystals Meet OPOs
72(1)
Epilogue: A Selective View of OPOs and Spectroscopy
73(1)
Acknowledgments
74(1)
References
74(23)
Solid-State Dye Lasers
97(24)
A. Costela
I. Garcia-Moreno
R. Sastre
Introduction
97(3)
Materials
100(21)
Organic Polymers
100(10)
Organic-Inorganic Hybrid Materials
110(4)
Silicon-Modified Organic Matrices
114(2)
Polymers with Nano- and Microparticles
116(1)
Applications
117(1)
References
118(3)
Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles
121(22)
F. J. Duarte
R. O. James
Introduction
121(2)
Tunable Laser Oscillator Review
123(3)
Synthesis of DDPN Laser Gain Media
126(3)
Experimental Results and Laser Emission
129(4)
Tunable Laser Emission
129(4)
Interferometric Interpretation
133(3)
Invisibility of Nanoparticle Distributions in the Visible Electromagnetic Spectrum
136(1)
Future Applications of DDPN Gain Media in Spectroscopy and Medicine
137(6)
Laser Spectroscopy
138(1)
Laser Medicine
138(1)
References
139(4)
Broadly Tunable External-Cavity Semiconductor Lasers
143(36)
F. J. Duarte
Introduction
143(1)
Dispersive Oscillator Cavities
144(5)
Optimized Dispersive Oscillator Cavities
147(2)
Optical Theory
149(14)
Interference and Diffraction
150(1)
Intracavity Dispersion
150(5)
Ray Transfer Matrices
155(2)
Linewidth
157(1)
Wavelength Tuning
158(1)
Tuning Miniature MEMS-Driven Cavities
159(4)
Tuning Using Bragg Gratings
163(1)
Performance of Tunable External-Cavity Semiconductor Lasers
163(3)
Performance of Ultrashort-Pulse External-Cavity Semiconductor Lasers
166(1)
Applications
167(3)
Conclusion
170(9)
References
172(7)
Tunable Fiber Lasers
179(18)
T. M. Shay
F. J. Duarte
Introduction
179(1)
Core and Cladding Pumped Fiber Lasers
180(2)
Tunable Fiber Laser Configurations
182(8)
Multiple-Prism Grating Configuration
187(3)
Demonstrated Tunable Fiber Laser Performance
190(3)
Summary
193(4)
References
194(3)
Fiber Laser Overview and Medical Applications
197(30)
S. Popov
Introduction
197(1)
Lasers in Medicine and Life Sciences
198(4)
Optical versus Thermal Response
200(2)
Principles, Types, and Performance of Fiber Lasers
202(7)
Host Fibers: Silica-, Phosphate-, and Fluoride-Based Glasses
203(1)
Gain Media
203(2)
Lasing Wavelengths
205(2)
Pumping and Laser Efficiency
207(1)
Advantages and Challenges
208(1)
Gain Materials and Operational Mode Relation to Particular Applications
209(18)
Erbium Lasers
209(4)
Ytterbium Lasers
213(1)
Thulium Lasers
214(1)
Holmium Lasers
215(1)
Co-Doped and ZBLAN Fiber Lasers
216(1)
Supercontinuum Fiber Lasers
217(3)
Making and Marking Tools and Instruments for the Medical Industry
220(1)
Acknowledgments
221(1)
References
221(6)
Medical Applications of Dye Lasers
227(18)
A. Costela
I. Garcia-Moreno
R. Sastre
Introduction
227(1)
Laser Treatment of Vascular Lesions
228(3)
Laser Treatment of Port-Wine Stains
229(1)
Laser Treatment of Hemangiomas
230(1)
Laser Treatment of Scars and Keloids
231(1)
Laser Treatment of Tattoos
232(2)
Lithotripsy
234(1)
Laser Angioplasty
234(1)
Dye Lasers for Photodynamic Therapy
235(3)
Laser Safety in Medicine
238(7)
References
239(6)
Biological Microscopy with Ultrashort Laser Pulses
245(36)
J. L. Thomas
W. Rudolph
Introduction
246(1)
Fundamentals
246(10)
Nonlinear Microscopy
247(4)
Signal Increase and Resolution Enhancement
251(1)
Plasmon Excitation
251(1)
Coherent Quantum Control in Microscopy
252(1)
Saturation Microscopies
253(1)
Microscopy with Time and Coherence Gating
254(2)
Laser Sources
256(3)
Femtosecond Oscillators (Kerr-Lens Modelocked Lasers)
256(1)
Femtosecond Fiber Laser
257(1)
Q-Switching
258(1)
Cavity Dumping
258(1)
Long Cavities
258(1)
External Storage Cavities
258(1)
Pulse Amplification
259(1)
Examples of Nonlinear Microscopic Imaging and Applications Using Short Laser Pulses
259(17)
Multiphoton Fluorescence Microscopy
259(1)
General
259(1)
Advantages and Applications
260(2)
Challenges and Cautions
262(1)
Resolution in Multiphoton Fluorescence Microscopy
263(1)
Harmonic Microscopies
264(1)
General
264(1)
Geometric Properties of Harmonic Sources and Emissions
265(2)
Advantages and Applications of SHG
267(2)
Third Harmonic Generation
269(1)
Four-Wave Mixing Microscopies
270(1)
General
270(1)
Advantages and Applications
270(1)
Challenges and Solutions
271(3)
Short-Pulse Lasers and CARS
274(1)
SPF
275(1)
Summary
276(5)
Acknowledgments
276(1)
References
276(5)
Pulsed, Tunable, Monochromatic X-Rays: Medical and Nonmedical Applications
281(30)
F. E. Carroll
Introduction
281(2)
The Medical Free-Electron Laser Program
283(6)
How Do Monochromatic X-Rays Differ from Other X-Rays Currently Available?
284(1)
Generation 2
284(2)
Desirable Design Characteristics for a Practical Compact Device
286(2)
Generation 3
288(1)
Applications
289(17)
Therapeutic Applications
289(8)
What About the Children?
297(1)
Diagnostic Applications
298(1)
Tunable, Monochromatic Mammography in 3D without Brest Compression
298(3)
K-Edge Imaging
301(1)
Phase Contrast Imaging
302(2)
Time-of-Flight Imaging
304(1)
Protein Crystallography
304(1)
Military and Industrial Applications
305(1)
The Future
306(5)
References
306(5)
Lithium Spectroscopy Using Tunable Diode Lasers
311(30)
I. E. Olivares
Introduction
311(1)
Description of Saturated Absorption Spectroscopy
312(2)
Multilevel Atoms
314(1)
Semiquantitative Ideas at Two-Level Atoms
314(1)
Detailed Saturated Absorption Calculations Using Matrix Elements
315(4)
The Saturated Absorption Spectrometer
319(1)
Spectroscopic Calculations
320(1)
Using a Diode Laser for Resonance Ionization Spectroscopy
321(9)
Energy Level Diagram
322(1)
Estimate of the Laser-Produced Ions at the End of a Laser Pulse
323(3)
Resonance Ionization Spectrometer
326(2)
Resonance Ionization Spectra
328(1)
Discussion and Conclusion
329(1)
Lithium Isotope Separation Using Tunable Diode Lasers
330(6)
Experimental Details
331(1)
Laser System
331(1)
Isotope Separation Appratus
332(1)
Calibration of the Magnetic Sector
332(1)
Experimental Overview
333(1)
Lithium Laser Isotope Separation
334(2)
Discussion and Conclusion
336(1)
Application of Lithium Isotopes
336(5)
Acknowledgments
336(1)
References
337(4)
Interferometric Imaging
341(34)
F. J. Duarte
Introduction
341(1)
Tunable Lasers
342(2)
The Interferometer
344(4)
Interferometric Theory
348(4)
Interferometric Calculations
352(5)
Applications
357(14)
Densitometry in the Macroscopic Domain
357(2)
Detection of Surface Microdefects
359(2)
Photographic Film Grain Structure
361(2)
Assessment of Transmission Gratings and MTF
363(1)
Theoretical Enhancement of the Resolution of Photodiode Arrays
364(1)
Laser Printing
365(1)
Wavelength Measurements
366(1)
Secure Interferometric Communications in Free Space
366(1)
Interferometry in Textiles
367(2)
Applications to Biomedicine
369(2)
Conclusions
371(4)
Acknowledgments
371(1)
References
372(3)
Multiple-Prism Arrays and Multiple-Prism Beam Expanders: Laser Optics and Scientific Applications
375(14)
F. J. Duarte
Introduction
375(1)
Dispersion Theory of Multiple-Prism Arrays
375(8)
The Interferometric Origin of Dispersion
380(3)
Applications to Laser Optics
383(1)
Applications to Laser Spectroscopy and Sequential Laser Excitation
383(1)
Applications to Guide Stars and Astronomy
384(1)
Applications to Pulse Compression in Ultrashort Pulse Lasers
384(1)
Applications to Microscopy and Ultrafast Spectroscopy
385(1)
Applications to Interferometry and Optical Metrology
385(4)
References
386(3)
Coherent Electrically Excited Organic Semiconductors
389(16)
F. J. Duarte
Introduction
389(1)
Tunable Narrow-Linewidth Solid-State Organic Lasers
390(2)
Spatial and Spectral Coherence
392(1)
Electrically Excited Interferometric Emitter
393(2)
Measured Beam Divergence and Interferograms
395(1)
Energetics
396(3)
Physical Interpretation of the Measurements
399(2)
Interferometric Linewidth Estimate
400(1)
Coherent Emission and Laser Emission
401(4)
References
402(3)
Appendix on Optical Quantities and Conversions of Units
405(4)
F. J. Duarte
Introduction
405(1)
Linewidth Equivalence
406(1)
Photon-Energy Wavelength Equivalence
407(2)
References
407(2)
Index 409
Interferometric Optics, Rochester, New York, USA University of Rochester, New York, USA