Muutke küpsiste eelistusi

Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS Softcover reprint of the original 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 110 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 52 Illustrations, color; 20 Illustrations, black and white; XIV, 110 p. 72 illus., 52 illus. in color., 1 Paperback / softback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 22-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319372343
  • ISBN-13: 9783319372341
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 110 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 52 Illustrations, color; 20 Illustrations, black and white; XIV, 110 p. 72 illus., 52 illus. in color., 1 Paperback / softback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 22-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319372343
  • ISBN-13: 9783319372341
This book provides readers with a state-of-the-art description of techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which special focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascading of RF and BB circuits in current domain for current reuse and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee.
1 Introduction
1(12)
1.1 Short-Range Wireless Communications
1(4)
1.1.1 The IEEE 802.15.4/ZigBee, IEEE 802.15.6 and Bluetooth Low Energy ULP Standards
2(3)
1.2 Design Considerations for ULP and ULC Short-Range Wireless RXs
5(2)
1.2.1 Power Supply (VDD)
5(1)
1.2.2 Carrier Frequency
6(1)
1.2.3 NB Versus UWB
7(1)
1.3 Main Targets
7(1)
1.4 Organization
8(1)
References
9(4)
2 Design and Implementation of Ultra-Low-Power ZigBee/WPAN Receiver
13(20)
2.1 Proposed "Split-LNTA + 50 % LO" Receiver
14(1)
2.2 Comparison of "Split-LNTA + 50 % LO" and "Single-LNTA + 25 % LO" Architectures
15(6)
2.2.1 Gain
16(2)
2.2.2 NF
18(1)
2.2.3 HP3
19(1)
2.2.4 Current- and Voltage-Mode Operations
20(1)
2.3 Circuit Techniques
21(5)
2.3.1 Impedance Up Conversion Matching
21(1)
2.3.2 Mixer-TIA Interface Biased for Impedance Transfer Filtering
22(2)
2.3.3 RC-CR Network and VCO Co-Design
24(2)
2.4 Experimental Results
26(5)
2.5 Conclusions
31(1)
References
31(2)
3 A 2.4-GHz ZigBee Receiver Exploiting an RF-to-BB-Current-Reuse Blixer + Hybrid Filter Topology in 65-nm CMOS
33(24)
3.1 Introduction
33(2)
3.2 Proposed Current-Reuse Receiver Architecture
35(2)
3.3 Circuit Implementation
37(10)
3.3.1 Wideband Input-Matching Network
37(1)
3.3.2 Balun-LNA with Active Gain Boost and Partial Noise Canceling
37(2)
3.3.3 Double-Balanced Mixers Offering Output Balancing
39(1)
3.3.4 Hybrid Filter 1st Half---Current-Mode Biquad with IF Noise-Shaping
40(2)
3.3.5 Hybrid Filter 2nd Half---Complex-Pole Load
42(1)
3.3.6 Current-Mirror VGA and RC-CR PPF
42(3)
3.3.7 VCO, Dividers and LO Buffers
45(2)
3.4 Experimental Results
47(5)
3.5 Conclusions
52(1)
Appendix A Sn ≤ 10 dB Bandwidth Versus the Q Factor (Qn) of the Input-Matching Network (Fig. 3.4a)
52(1)
Appendix B NF of the Balun-LNA Versus the Gain (GmCs) of the CS Branch with AGB (Fig. 3.4a)
53(1)
References
54(3)
4 Analysis and Modeling of a Gain-Boosted N-Path Switched-Capacitor Bandpass Filter
57(24)
4.1 Introduction
57(1)
4.2 GB-BPF Using an Ideal RLC Model
58(9)
4.2.1 RF Filtering at Vi and Vo
59(2)
4.2.2 3-dB Bandwidth at Vi and Vo
61(2)
4.2.3 Derivation of the Rp-Lp-Cp Model Using the LPTV Analysis
63(4)
4.3 Harmonic Selectivity, Harmonic Folding and Noise
67(8)
4.3.1 Harmonic Selectivity and Harmonic Folding
67(2)
4.3.2 Noise
69(4)
4.3.3 Intuitive Equivalent Circuit Model
73(2)
4.4 Design Example
75(1)
4.5 Conclusions
76(1)
Appendix A The Derivation of Eq. (4.18)
77(1)
Appendix B The Derivation of Lp and Cp
78(1)
References
79(2)
5 A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications
81(24)
5.1 Introduction
81(2)
5.2 ULP Techniques: Current Reuse, ULV and Proposed Function Reuse + Gain-Boosted N-Path SC Network
83(1)
5.3 Gain-Boosted N-Path SC Networks
83(11)
5.3.1 N-Path Tunable Receiver
83(6)
5.3.2 AC-Coupled N-Path Tunable Receiver
89(2)
5.3.3 Function-Reuse Receiver Embedding a Gain-Boosted N-Path SC Network
91(3)
5.4 Low-Voltage Current-Reuse VCO-Filter
94(1)
5.5 Experimental Results
95(4)
5.6 Conclusions
99(1)
Appendix A Output-Noise PSD at BB for the N-Path Tunable Receiver
99(1)
Appendix B Derivation and Modeling of BB Gain and Output Noise for the Function-Reuse Receiver
100(2)
References
102(3)
6 Conclusion
105(4)
6.1 General Conclusions
105(2)
6.2 Suggestions for Future Work
107(2)
Index 109