Preface |
|
ix | |
Notation |
|
xiii | |
Acronyms and Initialisms |
|
xvii | |
|
|
1 | (10) |
|
1.1 Nature of Uncertainties and Errors |
|
|
4 | (4) |
|
1.2 Predictive Estimation |
|
|
8 | (3) |
|
2 Large-Scale Applications |
|
|
11 | (40) |
|
|
11 | (10) |
|
|
21 | (12) |
|
2.3 Subsurface Hydrology and Geology |
|
|
33 | (3) |
|
2.4 Nuclear Reactor Design |
|
|
36 | (8) |
|
|
44 | (7) |
|
|
51 | (16) |
|
|
51 | (10) |
|
3.2 Evolution, Stationary, and Algebraic Models |
|
|
61 | (2) |
|
3.3 Abstract Modeling Framework |
|
|
63 | (2) |
|
3.4 Notation for Parameters and Inputs |
|
|
65 | (1) |
|
|
66 | (1) |
|
4 Fundamentals of Probability, Random Processes, and Statistics |
|
|
67 | (40) |
|
4.1 Random Variables, Distributions, and Densities |
|
|
67 | (12) |
|
4.2 Estimators, Estimates, and Sampling Distributions |
|
|
79 | (3) |
|
4.3 Ordinary Least Squares and Maximum Likelihood Estimators |
|
|
82 | (3) |
|
4.4 Modes of Convergence and Limit Theorems |
|
|
85 | (2) |
|
|
87 | (3) |
|
|
90 | (6) |
|
4.7 Random versus Stochastic Differential Equations |
|
|
96 | (2) |
|
4.8 Statistical Inference |
|
|
98 | (6) |
|
|
104 | (1) |
|
|
105 | (2) |
|
5 Representation of Random Inputs |
|
|
107 | (6) |
|
5.1 Mutually Independent Random Parameters |
|
|
107 | (1) |
|
5.2 Correlated Random Parameters |
|
|
108 | (1) |
|
5.3 Finite-Dimensional Representation of Random Coefficients |
|
|
109 | (3) |
|
|
112 | (1) |
|
6 Parameter Selection Techniques |
|
|
113 | (18) |
|
6.1 Linearly Parameterized Problems |
|
|
115 | (7) |
|
6.2 Nonlinearly Parameterized Problems |
|
|
122 | (3) |
|
6.3 Parameter Correlation versus Identifiability |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (3) |
|
7 Frequentist Techniques for Parameter Estimation |
|
|
131 | (24) |
|
7.1 Parameter Estimation from a Frequentist Perspective |
|
|
133 | (1) |
|
|
134 | (7) |
|
7.3 Nonlinear Parameter Estimation Problem |
|
|
141 | (11) |
|
|
152 | (1) |
|
|
153 | (2) |
|
8 Bayesian Techniques for Parameter Estimation |
|
|
155 | (32) |
|
8.1 Parameter Estimation from a Bayesian Perspective |
|
|
155 | (4) |
|
8.2 Markov Chain Monte Carlo (MCMC) Techniques |
|
|
159 | (1) |
|
8.3 Metropolis and Metropolis--Hastings Algorithms |
|
|
159 | (9) |
|
8.4 Stationary Distribution and Convergence Criteria |
|
|
168 | (3) |
|
8.5 Parameter Identifiability |
|
|
171 | (1) |
|
8.6 Delayed Rejection Adaptive Metropolis (DRAM) |
|
|
172 | (9) |
|
8.7 DiffeRential Evolution Adaptive Metropolis (DREAM) |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
184 | (3) |
|
9 Uncertainty Propagation in Models |
|
|
187 | (20) |
|
9.1 Direct Evaluation for Linear Models |
|
|
188 | (3) |
|
|
191 | (1) |
|
|
192 | (5) |
|
|
197 | (6) |
|
|
203 | (1) |
|
|
204 | (3) |
|
10 Stochastic Spectral Methods |
|
|
207 | (32) |
|
10.1 Spectral Representation of Random Processes |
|
|
207 | (7) |
|
10.2 Galerkin, Collocation, and Discrete Projection Frameworks |
|
|
214 | (12) |
|
10.3 Stochastic Galerkin Method---Examples |
|
|
226 | (8) |
|
10.4 Discrete Projection Method---Example |
|
|
234 | (1) |
|
10.5 Stochastic Polynomial Packages |
|
|
235 | (1) |
|
|
236 | (3) |
|
11 Sparse Grid Quadrature and Interpolation Techniques |
|
|
239 | (18) |
|
11.1 Quadrature Techniques |
|
|
239 | (11) |
|
11.2 Interpolating Polynomials for Collocation |
|
|
250 | (4) |
|
11.3 Sparse Grid Software |
|
|
254 | (1) |
|
|
255 | (2) |
|
12 Prediction in the Presence of Model Discrepancy |
|
|
257 | (14) |
|
12.1 Effects of Unaccommodated Model Discrepancy |
|
|
261 | (2) |
|
12.2 Incorporation of Missing Physical Mechanisms |
|
|
263 | (2) |
|
12.3 Techniques to Quantify Model Errors |
|
|
265 | (2) |
|
12.4 Issues Pertaining to Model Discrepancy Representations |
|
|
267 | (2) |
|
12.5 Notes and References |
|
|
269 | (1) |
|
|
269 | (2) |
|
|
271 | (32) |
|
13.1 Regression or Interpolation-Based Models |
|
|
273 | (7) |
|
13.2 Projection-Based Models |
|
|
280 | (3) |
|
13.3 Eigenfunction or Modal Expansions |
|
|
283 | (1) |
|
13.4 Snapshot-Based Methods including POD |
|
|
284 | (5) |
|
13.5 High-Dimensional Model Representation (HDMR) Techniques |
|
|
289 | (9) |
|
13.6 Surrogate-Based Bayesian Model Calibration |
|
|
298 | (1) |
|
13.7 Notes and References |
|
|
299 | (1) |
|
|
300 | (3) |
|
14 Local Sensitivity Analysis |
|
|
303 | (18) |
|
14.1 Motivating Examples---Neutron Diffusion |
|
|
306 | (6) |
|
14.2 Functional Analytic Framework for FSAP and ASAP |
|
|
312 | (6) |
|
14.3 Notes and References |
|
|
318 | (1) |
|
|
319 | (2) |
|
15 Global Sensitivity Analysis |
|
|
321 | (24) |
|
15.1 Variance-Based Methods |
|
|
323 | (8) |
|
|
331 | (6) |
|
15.3 Time- or Space-Dependent Responses |
|
|
337 | (6) |
|
15.4 Notes and References |
|
|
343 | (1) |
|
|
344 | (1) |
|
A Concepts from Functional Analysis |
|
|
345 | (8) |
|
|
351 | (2) |
Bibliography |
|
353 | (20) |
Index |
|
373 | |