Muutke küpsiste eelistusi

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: 5th International Workshop, UNSURE 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings 1st ed. 2023 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 220 pages, kõrgus x laius: 235x155 mm, kaal: 367 g, 54 Illustrations, color; 4 Illustrations, black and white; XIII, 220 p. 58 illus., 54 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14291
  • Ilmumisaeg: 07-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031443357
  • ISBN-13: 9783031443350
  • Pehme köide
  • Hind: 62,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 73,64 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 220 pages, kõrgus x laius: 235x155 mm, kaal: 367 g, 54 Illustrations, color; 4 Illustrations, black and white; XIII, 220 p. 58 illus., 54 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14291
  • Ilmumisaeg: 07-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031443357
  • ISBN-13: 9783031443350
This book constitutes the refereed proceedings of the 5th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2023, held in conjunction with MICCAI 2023 in Vancouver, Canada, in October 2023. 

For this workshop, 21 papers from 32 submissions were accepted for publication. The accepted papers cover the fields of uncertainty estimation and modeling, as well as out of distribution management, domain shift robustness, Bayesian deep learning and uncertainty calibration.
Uncertainty estimation and modelling.- Out of Distribution management
and domain shift robustness.- Bayesian deep learning and uncertainty
calibration.