Muutke küpsiste eelistusi

Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis [Pehme köide]

(University of Kansas, USA), (University of Kansas, USA)
  • Formaat: Paperback / softback, 608 pages, kõrgus x laius x paksus: 252x175x25 mm, kaal: 930 g
  • Sari: AGU Advanced Textbooks
  • Ilmumisaeg: 30-Nov-2020
  • Kirjastus: American Geophysical Union
  • ISBN-10: 1119420326
  • ISBN-13: 9781119420323
Teised raamatud teemal:
  • Formaat: Paperback / softback, 608 pages, kõrgus x laius x paksus: 252x175x25 mm, kaal: 930 g
  • Sari: AGU Advanced Textbooks
  • Ilmumisaeg: 30-Nov-2020
  • Kirjastus: American Geophysical Union
  • ISBN-10: 1119420326
  • ISBN-13: 9781119420323
Teised raamatud teemal:

A comprehensive textbook presenting techniques for the analysis and characterization of shale plays

Significant reserves of hydrocarbons cannot be extracted using conventional methods. Improvements in techniques such as horizontal drilling and hydraulic fracturing have increased access to unconventional hydrocarbon resources, ushering in the “shale boom” and disrupting the energy sector.

Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis covers the geochemistry, petrophysics, geomechanics and economics of unconventional shale oil plays. The text uses a step-by-step approach to demonstrate industry-standard workflows for calculating resource volume and optimizing the extraction process.

Volume highlights include:

  • Methods for rock and fluid characterization of unconventional shale plays
  • A workflow for analyzing wells with stimulated reservoir volume regions
  • An unconventional approach to understanding of fluid flow through porous media
  • A comprehensive summary of discoveries of massive shale resources worldwide
  • Data from Eagle Ford, Woodford, Wolfcamp, and The Bakken shale plays
  • Examples, homework assignments, projects, and access to supplementary online resources
  • Hands-on teaching materials for use in petroleum engineering software applications

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Contributors xiii
Preface xv
1 Introduction to Unconventional Hydrocarbon Resources
1(44)
Mustafa M. Alhubail
Reza Barati Ghahfarokhi
1.1 Background
1(1)
1.2 Overview of Shale Revolution
2(3)
1.2.1 What Led to the Shale Phenomenon?
3(1)
1.2.2 Importance of Recent Unconventional Resource Discoveries
4(1)
1.3 Basic Definitions and Classifications
5(3)
1.3.1 Conventional and Unconventional Resources
5(1)
1.3.2 Unconventional Oil-Bearing Sediments
6(1)
1.3.3 Unconventional Natural Gas Resources
6(2)
1.4 Global Description of Unconventional Plays
8(29)
1.4.1 North America Unconventional Plays
9(11)
1.4.2 South America Unconventional Plays
20(4)
1.4.3 Europe Unconventional Plays
24(6)
1.4.4 Middle East Unconventional Plays
30(1)
1.4.5 Africa Unconventional Plays
31(2)
1.4.6 Asia Unconventional Plays
33(3)
1.4.7 Australia Unconventional Plays
36(1)
1.5 Unconventional Resources Interpretation Workflow
37(1)
1.5.1 Workflow of Unconventional Reservoirs
37(1)
1.6 Future Projection and Challenges
38(1)
1.7 General Remarks
39(1)
1.8 Problems
39(6)
Additional Reading
40(1)
References
40(5)
2 Petrophysical Properties of Unconventional Reservoirs
45(86)
Negar Nazari
Mustafa M. Alhubail
Sherifa E. Cudjoe
Reza Barati Ghahfarokhi
2.1 Background
45(1)
2.2 Petrophysics
45(6)
2.2.1 Evaluation of Rock Properties
46(1)
2.2.2 Shale Volume
46(2)
2.2.3 Gamma Ray Spectroscopy
48(3)
2.3 Lithology Evaluation
51(7)
2.3.1 Lithology Measurements Using Cross-Plots
52(1)
2.3.2 Lithology Measurements Using a Combination of Logs
53(4)
2.3.3 Lithology Measurements Using the Diffuse Reflectance Infrared Fourier Transform Spectroscopy Techniques
57(1)
2.4 Porosity
58(17)
2.4.1 Porosity Measurement
60(11)
2.4.2 NMR Core Porosity for Shales
71(4)
2.5 Pore-Size Distribution
75(5)
2.5.1 Pore-Size Distribution Using NMR Logging
75(3)
2.5.2 Pore-Size Distribution Using Nitrogen Adsorption
78(2)
2.6 Permeability
80(20)
2.6.1 Unsteady-State Permeability Measurement Methods
81(8)
2.6.2 Single Phase Permeability Measurements
89(2)
2.6.3 NMR Permeability
91(4)
2.6.4 Relative Permeability
95(4)
2.6.5 NMR Capillary Pressure
99(1)
2.6.6 Relative Permeability from NMR Pseudocapillary Pressure
99(1)
2.7 Saturation
100(5)
2.7.1 Techniques for Calculating Water Saturation
100(1)
2.7.2 Resistivity Logs
100(4)
2.7.3 NMR Saturation Estimation
104(1)
2.8 Wettability
105(5)
2.8.1 Wettability Measurement
105(5)
2.9 Hydrocarbon Pore Volume and Reserve Estimation
110(5)
2.9.1 Volumetric Analysis Theory
110(5)
2.10 Problems
115(16)
Additional Reading
117(1)
References
117(14)
3 Petroleum Geochemistry in Organic-Rich Shale Reservoirs
131(58)
Sherifa E. Cudjoe
Mustafa M. Alhubail
Reza Barati Ghahfarokhi
3.1 Background
131(1)
3.2 Evolution of Organic Matter
131(2)
3.2.1 Diagenesis
132(1)
3.2.2 Catagenesis
132(1)
3.2.3 Metagenesis
133(1)
3.3 Total Organic Carbon (TOC)
133(1)
3.4 Kerogen, Bitumen, and/or Pyrobitumen
134(4)
3.4.1 Classification of Kerogen
136(2)
3.5 Vitrinite Reflectance
138(1)
3.6 Solid Bitumen Reflectance
139(1)
3.7 Organic Porosity
140(2)
3.8 Methods of Determining Source Rock Potential
142(18)
3.8.1 Direct Combustion
143(1)
3.8.2 Indirect Method
143(1)
3.8.3 Rock-Eval Pyrolysis Method
143(8)
3.8.4 In-Situ Measurements
151(9)
3.9 Original TOC and Hydrocarbon Yield Determinations
160(5)
3.9.1 Organic Porosity from Rock-Eval Parameters
163(2)
3.10 Thermal Maturity and Source Rock Assessment
165(5)
3.10.1 Biological Markers (Biomarkers)
165(3)
3.10.2 Diamondoids
168(2)
3.11 Raman Spectroscopy Analysis of Thermal Maturity in Kerogen
170(6)
3.11.1 Thermal Maturity Controls of Organic Matter Types in LEF Samples
171(5)
3.11.2 Maturity-Related Changes
176(1)
3.12 Drifts Analysis of Kerogen Maturity
176(3)
3.13 Problems
179(10)
Additional Reading
182(1)
References
182(7)
4 Application of Imaging Techniques in the Characterization of Organic-Rich Shales
189(76)
Sherifa E. Cudjoe
Reza Barati Ghahfarokhi
4.1 Background
189(1)
4.2 X-ray Microcomputed Tomography (X-ray Micro-CT)
190(23)
4.2.1 Operation of X-Ray Micro-CT
192(2)
4.2.2 Sample Preparation
194(2)
4.2.3 X-ray Micro-CT Scanning Procedure
196(2)
4.2.4 Image Reconstruction
198(2)
4.2.5 Application of X-ray Micro-CT on Shale Samples
200(3)
4.2.6 Image Visualization and Processing
203(6)
4.2.7 Estimating Porosity from CT number (CTN) of CT Images
209(3)
4.2.8 Permeability Estimation from CT scanner
212(1)
4.2.9 Two-Phase Fluid Saturations
212(1)
4.3 X-Ray Nano-CT
213(4)
4.3.1 Sample Preparation for X-Ray Nano-CT
214(1)
4.3.2 In-Situ Wettability and Spontaneous Imbibition at Nanoscale
214(3)
4.4 Electron Microscopy
217(32)
4.4.1 Scanning Electron Microscopy (SEM)
217(3)
4.4.2 SEM/BSE Images of Various Ultratight, Organic-Rich Formations
220(8)
4.4.3 Energy-Dispersive X-Ray Spectrometry (EDS/EDX)
228(7)
4.4.4 Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN)
235(6)
4.4.5 Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM)
241(2)
4.4.6 Three-Dimensional (3D) Rock Model
243(2)
4.4.7 Pore Network Model (PNM) and Pore Size Distribution (PSD)
245(4)
4.4.8 Permeability Estimation
249(1)
4.5 Broad Ion Beam-Scanning Electron Microscopy (BIB-SEM)
249(2)
4.5.1 Sample Preparation, BIB-SEM Acquisition and Processing
250(1)
4.6 Acknowledgment
251(1)
4.7 Problems on Micro-CT and Nano-CT
252(1)
4.8 Problems on Electron Microscopy
252(13)
Additional Reading
257(1)
References
257(8)
5 Geomechanical Properties of Unconventional Reservoirs
265(34)
Mustafa M. Alhubail
Anil Misra
Reza Barati Ghahfarokhi
5.1 Background
265(1)
5.2 Basic Concepts and Definitions
265(4)
5.2.1 Stress
265(1)
5.2.2 Strain
266(1)
5.2.3 Elastic Constants
266(1)
5.2.4 Poisson's Ratio
267(2)
5.3 Stresses and Pressure Gradients
269(8)
5.3.1 Vertical Stress and Overburden Pressure
269(1)
5.3.2 Effective Vertical Stress
270(1)
5.3.3 Effective Horizontal Stress
271(1)
5.3.4 Biot's Poroelastic Constant
271(1)
5.3.5 Horizontal Stresses and Fracturing Pressure
272(5)
5.4 Well-Logging Measurements to Determine the Elastic Parameters
277(5)
5.4.1 Calculating the Dynamic Moduli
277(4)
5.4.2 Correlations for Static Moduli
281(1)
5.5 Identifying the Geomechanical Sweet Spots
282(8)
5.5.1 Brittleness Index
283(7)
5.6 General Remarks
290(1)
5.7 Problems
291(8)
Additional Reading
294(1)
References
294(5)
6 Hydraulic Fracturing
299(60)
Mustafa M. Alhubail
Reza Barati Ghahfarokhi
6.1 Background
299(1)
6.2 Fundamentals of Hydraulic Fracturing
300(23)
6.2.1 Fracture Geometry
301(1)
6.2.2 Fracture Conductivity
301(4)
6.2.3 Folds of Increase
305(2)
6.2.4 Multistage Hydraulic Fracturing
307(3)
6.2.5 Stress Shadow
310(1)
6.2.6 Zipper Fracturing
311(1)
6.2.7 Fracture Hits
312(3)
6.2.8 Surface Pumps
315(1)
6.2.9 Minifrac and DFIT Tests
316(4)
6.2.10 Microseismic Monitoring
320(1)
6.2.11 Stimulated Reservoir Volume
321(2)
6.3 Fracturing Fluids
323(10)
6.3.1 Purpose
323(1)
6.3.2 Fracturing Fluid Types, Properties and Selection Process
324(2)
6.3.3 Rheology of Fracturing Fluids
326(3)
6.3.4 Damage of Fracturing Fluid and Fracture Cleanup
329(1)
6.3.5 Fracturing Fluids Additives
329(4)
6.4 Proppant
333(8)
6.4.1 Purpose
334(1)
6.4.2 Proppant Characteristics and Selection Process
334(3)
6.4.3 Proppant Types
337(2)
6.4.4 Proppant Flowback
339(1)
6.4.5 Proppant Transport
340(1)
6.4.6 Proppant Schedule
341(1)
6.5 Modeling of Hydraulic Fractures
341(10)
6.5.1 Importance of Modeling
342(1)
6.5.2 Governing Processes of the Models
342(1)
6.5.3 Modeling History
342(9)
6.6 Problems
351(8)
Additional Reading
352(1)
References
352(7)
7 Phase Behavior of Shale Oil and Gas
359(54)
Xiaoli Li
Jyun-Syung Tsau
Qinwen Fu
Reza Barati Ghahfarokhi
7.1 Background
359(1)
7.2 Compositional Analyses of Shale Fluids
359(9)
7.2.1 Subsurface Sampling
360(3)
1.2.2 Surface Sampling
363(5)
7.3 Phase Behavior and PVT Experiments
368(11)
7.3.1 Phase Diagrams
368(4)
7.3.2 PVT Experiments and Data Quality Check
372(7)
7.4 Equation of State (EOS)
379(14)
7.4.1 Cubic Equation of State
379(2)
7.4.2 Stability Analysis
381(1)
7.4.3 Confinement/Pore Proximity Effect on Phase Behavior
382(8)
7.4.4 Phase Diagrams of Bakken, Eagle Ford, and Wolfcamp Fluids
390(3)
7.4.5 Diffusion Coefficient
393(1)
7.5 EOS Regression to Experimental Data
393(2)
7.6 Minimum Miscibility Pressure
395(8)
7.6.1 Experimental Methods
396(6)
7.6.2 Analytical Methods
402(1)
7.6.3 Numerical Methods
403(1)
7.6.4 Correlation Methods
403(1)
1.1 Problems
403(10)
Additional Reading
408(1)
References
408(5)
8 Fluid Flow Through Nanosized Pores
413(32)
Mohammad Kazemi
Ali Takbiri-Borujeni
Sherifa E. Cudjoe
Reza Barati Ghahfarokhi
8.1 Background
413(1)
8.2 Pore Size Distribution
414(1)
8.3 Adsorption
414(4)
8.4 Flow Regimes
418(3)
8.5 Modeling Techniques
421(7)
8.5.1 Fluid Transport in Confined Enclosures
421(1)
8.5.2 Apparent Permeability of Shale
421(2)
8.5.3 Transport in Organic Nanopores
423(1)
8.5.4 Molecular Simulations
424(1)
8.5.5 Molecular Structure of Kerogen
424(3)
8.5.6 Multiscale Modeling Techniques
427(1)
8.6 Lattice Boltzmann Model (LBM)
428(6)
8.6.1 LBM Simulation
431(1)
8.6.2 Implementation of LBM Simulation in Organic Nanopores
432(1)
8.6.3 Apparent Permeability
433(1)
8.7 Problems
434(11)
Additional Reading
434(1)
References
434(5)
Appendix
439(6)
9 Decline Curve and Rate Transient Analysis
445(54)
Mustafa M. Alhubail
Mojdeh Rasoulzadeh
Reza Barati Ghahfarokhi
9.1 Background
445(1)
9.2 Purpose of Decline Curves
445(1)
9.3 Decline Curve Assumptions and Limitations
446(1)
9.4 Traditional Decline Curve Models
447(1)
9.5 Arps's Models
447(9)
9.5.1 Exponential Decline Model
448(1)
9.5.2 Determination of Exponential Decline Graphically
448(3)
9.5.3 Harmonic Decline Model
451(1)
9.5.4 Determination of Harmonic Decline Graphically
451(1)
9.5.5 Hyperbolic Decline Model
452(2)
9.5.6 Determination of Hyperbolic Decline Parameters
454(2)
9.6 Modern Decline Curve Models
456(8)
9.6.1 Modified Hyperbolic Model
457(2)
9.6.2 Power-Law Exponential Model
459(1)
9.6.3 Stretched Exponential Model
460(2)
9.6.4 Logistic Growth Model
462(1)
9.6.5 Duong Model
462(2)
9.7 Rate Transient Analysis
464(14)
9.7.1 Purpose and Features of RTA
464(1)
9.7.2 RTA Concept
465(1)
9.7.3 Type Curves
466(1)
9.7.4 Type Curve Methods
467(4)
9.7.5 Square Root Time and Flowing Material Balance Plots
471(1)
9.7.6 Flow Regimes
472(6)
9.8 Problems
478(21)
Additional Reading
494(1)
References
494(5)
10 Petroleum Economics of Unconventional Shale Reservoirs
499(28)
Mustafa M. Alhubail
Hajar Aghababa
Reza Barati Ghahfarokhi
10.1 Background
499(1)
10.2 Effect of Shale Oil/Gas Developments on Economics and Energy Security
499(4)
10.3 Fundamentals of Petroleum Economics
503(10)
10.3.1 Business Expenditures
503(1)
10.3.2 Basic Cash Flow
504(4)
10.3.3 Interest Rate
508(1)
10.3.4 Future Value
509(1)
10.3.5 Present Value
509(1)
10.3.6 Net Present Value (NPV)
510(1)
10.3.7 Rate of Return (ROR)
511(1)
10.3.8 Payout
512(1)
10.4 Fiscal Regimes and Contracts
513(3)
10.4.1 The Concessionary System (Royalty/Tax System)
513(1)
10.4.2 The Production Sharing Contracts (PSCs)
513(2)
10.4.3 Service Contracts
515(1)
10.5 Decision, Uncertainty, and Risk Analysis
516(1)
10.6
Chapter Project
517(8)
10.6.1 Project Data
518(1)
10.6.2 Project Calculations
518(7)
10.7 Problems
525(2)
Additional Reading
526(1)
References
526(1)
11 Environmental Aspects of Shale Hydrocarbon Reservoir Developments
527(28)
Reza Barati Ghahfarokhi
Stephen Randtke
Edward Peltier
11.1 Background
527(1)
11.2 Water Management and Reuse
527(12)
11.2.1 Basic Terminology Related to Water Management and Reuse
527(2)
11.2.2 Water Cycle in Oil and Gas Production
529(2)
11.2.3 Water Acquisition for Hydraulic Fracturing
531(2)
11.2.4 Flowback and Produced Water Quantity and Quality
533(2)
11.2.5 Flowback and Produced Water Reuse
535(4)
11.3 Chemicals used in Fracturing Fluids
539(7)
11.4 Potential Impacts on Drinking Water Resources
546(3)
11.5 Induced Seismicity
549(2)
11.6 Air Pollution
551(1)
11.7 Problems
552(3)
Additional Reading
552(1)
References
552(3)
Index 555
Reza Barati, University of Kansas, USA

Mustafa M. Alhubail, University of Kansas, USA