|
|
1 | (6) |
|
|
7 | (30) |
|
2.1 Probability Spaces and Events |
|
|
7 | (4) |
|
|
11 | (1) |
|
2.3 Conditional Probabilities and Independence |
|
|
11 | (2) |
|
|
13 | (2) |
|
2.5 Probability Distributions |
|
|
15 | (6) |
|
2.6 Expectation of a Random Variable |
|
|
21 | (6) |
|
2.7 Conditional Expectation |
|
|
27 | (2) |
|
2.8 Moment and Probability Generating Functions |
|
|
29 | (8) |
|
|
37 | (24) |
|
3.1 Constrained Random Walk |
|
|
37 | (1) |
|
|
38 | (11) |
|
|
49 | (12) |
|
|
61 | (16) |
|
4.1 Unrestricted Random Walk |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (13) |
|
5 Discrete-Time Markov Chains |
|
|
77 | (18) |
|
|
77 | (2) |
|
|
79 | (2) |
|
5.3 Examples of Markov Chains |
|
|
81 | (3) |
|
5.4 Higher Order Transition Probabilities |
|
|
84 | (3) |
|
5.5 The Two-State Discrete-Time Markov Chain |
|
|
87 | (8) |
|
|
95 | (22) |
|
6.1 Hitting Probabilities |
|
|
95 | (3) |
|
6.2 Mean Hitting and Absorption Times |
|
|
98 | (5) |
|
|
103 | (5) |
|
|
108 | (9) |
|
7 Classification of States |
|
|
117 | (12) |
|
|
117 | (2) |
|
|
119 | (2) |
|
|
121 | (3) |
|
7.4 Positive and Null Recurrence |
|
|
124 | (1) |
|
7.5 Periodicity and Aperiodicity |
|
|
125 | (4) |
|
8 Long-Run Behavior of Markov Chains |
|
|
129 | (20) |
|
8.1 Limiting Distributions |
|
|
129 | (1) |
|
8.2 Stationary Distributions |
|
|
130 | (9) |
|
8.3 Markov Chain Monte Carlo |
|
|
139 | (10) |
|
|
149 | (18) |
|
9.1 Definition and Examples |
|
|
149 | (3) |
|
9.2 Probability Generating Functions |
|
|
152 | (2) |
|
9.3 Extinction Probabilities |
|
|
154 | (13) |
|
10 Continuous-Time Markov Chains |
|
|
167 | (44) |
|
|
167 | (5) |
|
10.2 Continuous-Time Chains |
|
|
172 | (4) |
|
10.3 Transition Semigroup |
|
|
176 | (4) |
|
10.4 Infinitesimal Generator |
|
|
180 | (7) |
|
10.5 The Two-State Continuous-Time Markov Chain |
|
|
187 | (4) |
|
10.6 Limiting and Stationary Distributions |
|
|
191 | (5) |
|
10.7 The Discrete-Time Embedded Chain |
|
|
196 | (4) |
|
10.8 Mean Absorption Time and Probabilities |
|
|
200 | (11) |
|
11 Discrete-Time Martingales |
|
|
211 | (14) |
|
11.1 Filtrations and Conditional Expectations |
|
|
211 | (1) |
|
11.2 Martingales---Definition and Properties |
|
|
212 | (4) |
|
|
216 | (4) |
|
|
220 | (5) |
|
12 Spatial Poisson Processes |
|
|
225 | (16) |
|
12.1 Spatial Poisson (1781-1840) Processes |
|
|
225 | (2) |
|
12.2 Poisson Stochastic Integrals |
|
|
227 | (2) |
|
12.3 Transformations of Poisson Measures |
|
|
229 | (2) |
|
12.4 Moments of Poisson Stochastic Integrals |
|
|
231 | (4) |
|
12.5 Deviation Inequalities |
|
|
235 | (6) |
|
|
241 | (10) |
|
13.1 Survival Probabilities |
|
|
241 | (2) |
|
13.2 Poisson Process with Time-Dependent Intensity |
|
|
243 | (1) |
|
13.3 Mean Time to Failure |
|
|
244 | (7) |
|
|
247 | (4) |
|
Solutions to the Exercises |
|
|
251 | (98) |
|
Chapter 2 Probability Background |
|
|
251 | (9) |
|
Chapter 3 Gambling Problems |
|
|
260 | (6) |
|
|
266 | (5) |
|
Chapter 5 Discrete-Time Markov Chains |
|
|
271 | (1) |
|
Chapter 6 First Step Analysis |
|
|
272 | (18) |
|
Chapter 7 Classification of States |
|
|
290 | (2) |
|
Chapter 8 Limiting and Stationary Distributions |
|
|
292 | (20) |
|
Chapter 9 Branching Processes |
|
|
312 | (9) |
|
Chapter 10 Continuous-Time Markov Chains |
|
|
321 | (24) |
|
Chapter 11 Discrete-Time Martingales |
|
|
345 | (1) |
|
Chapter 12 Spatial Poisson Processes |
|
|
346 | (2) |
|
Chapter 13 Reliability and Renewal Processes |
|
|
348 | (1) |
Bibliography |
|
349 | (2) |
Index |
|
351 | |