Muutke küpsiste eelistusi

Use of Smartphones in Optical Experimentation [Pehme köide]

  • Formaat: Paperback / softback, 180 pages
  • Sari: Tutorial Texts
  • Ilmumisaeg: 30-Dec-2022
  • Kirjastus: SPIE Press
  • ISBN-10: 1510654976
  • ISBN-13: 9781510654976
  • Formaat: Paperback / softback, 180 pages
  • Sari: Tutorial Texts
  • Ilmumisaeg: 30-Dec-2022
  • Kirjastus: SPIE Press
  • ISBN-10: 1510654976
  • ISBN-13: 9781510654976
Use of Smartphones in Optical Experimentation shows how smartphone-based optical labs can be designed and realized. The book presents demonstrations of fundamental geometric and physical optical principles, including the law of reflection, the law of refraction, image formation equations, dispersion, Beer's law, polarization, Fresnel's equations, optical rotation, diffraction, interference, and blackbody radiation. Many practical applicationshow to design a monochromator and a spectrometer, use the Gaussian beam of a laser, measure the colors of LED lights, and estimate the temperature of an incandescent lamp or the Sunare also included. The experimental designs provided in this book represent only a hint of the power of leveraging the technological capability of smartphones and other low-cost materials to create a physics lab.
Preface xiii
1 Smartphones and Their Optical Sensors
1(16)
1.1 History and Current Utilization in Education
1(2)
1.2 Smartphone Camera
3(8)
1.2.1 Optical sensor
3(5)
1.2.2 Adaptive optical system
8(3)
1.3 Using the Smartphone Camera in Experiments
11(6)
References
11(6)
2 Experimental Data Analysis
17(20)
2.1 Experiments and Measurement Error
17(9)
2.1.1 General physics experimental procedure
17(2)
2.1.2 The experimental measurements
19(3)
2.1.3 Errors in measurements
22(4)
2.2 Numerical/Parameter Estimation
26(6)
2.2.1 Estimation of a direct measurement
26(3)
2.2.2 Estimation of a relationship
29(3)
2.3 Model Testing
32(5)
References
35(2)
3 Law of Reflection
37(4)
3.1 Introduction
37(1)
3.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)
37(4)
3.2.1 General strategy
37(1)
3.2.2 Materials
38(1)
3.2.3 Experimental setup
38(1)
3.2.4 Experimental results
39(2)
4 Law of Refraction
41(4)
4.1 Introduction
41(1)
4.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)
41(4)
4.2.1 General strategy
41(1)
4.2.2 Materials
42(1)
4.2.3 Experimental setup
42(1)
4.2.4 Experimental results
42(3)
5 Image Formation
45(6)
5.1 Introduction
45(2)
5.2 Smartphone Experiment (Michael Biddle and Robert Dawson, 2015; Yoong Sheng Phang, 2021)
47(4)
5.2.1 General strategy
47(1)
5.2.2 Materials
47(1)
5.2.3 Experimental setup
48(1)
5.2.4 Experimental results
48(1)
References
49(2)
6 Linear Polarization
51(4)
6.1 Introduction
51(1)
6.2 Smartphone Experiment (Sungjae Cho and Aojie Xue, 2019)
52(3)
6.2.1 General strategy
52(1)
6.2.2 Materials
52(1)
6.2.3 Experimental setup
52(1)
6.2.4 Experimental results
53(2)
7 Fresnel Equations
55(4)
7.1 Introduction
55(1)
7.2 Smartphone Experiment (Graham McKinnon, 2020)
56(3)
7.2.1 General strategy
56(1)
7.2.2 Materials
56(1)
7.2.3 Experimental setup
56(1)
7.2.4 Preliminary results
57(2)
8 Brewster's Angle
59(4)
8.1 Introduction
59(1)
8.2 Smartphone Experiment (Robert Bull and Daniel Desena, 2019)
60(3)
8.2.1 General strategy
60(1)
8.2.2 Materials
60(1)
8.2.3 Experimental setup
60(1)
8.2.4 Experimental results
61(1)
Reference
62(1)
9 Optical Rotation
63(4)
9.1 Introduction
63(1)
9.2 Smartphone Experiment (Nicholas Kruegler, 2020)
64(3)
9.2.1 General strategy
64(1)
9.2.2 Materials
64(1)
9.2.3 Experimental setup
64(1)
9.2.4 Experimental results
65(1)
References
66(1)
10 Thin Film Interference
67(4)
10.1 Introduction
67(2)
10.2 Smartphone Experiment (Nicolas Lohner and Austin Baeckeroot, 2017)
69(2)
10.2.1 General strategy
69(1)
10.2.2 Materials
69(1)
10.2.3 Experimental setup
69(1)
10.2.4 Experimental results
70(1)
11 Wedge Interference
71(4)
11.1 Introduction
71(1)
11.2 Smartphone Experiment (Graham McKinnon and Nicholas Brosnahan, 2020)
72(3)
11.2.1 General strategy
72(1)
11.2.2 Materials
72(1)
11.2.3 Experimental setup
72(1)
11.2.4 Experimental results
73(2)
12 Diffraction from Gratings
75(8)
12.1 Introduction
75(2)
12.2 Smartphone Experiment I: Diffraction from an iPhone Screen (Zach Eidex and Clayton Oetting, 2018)
77(2)
12.2.1 General strategy
77(1)
12.2.2 Materials
77(1)
12.2.3 Experimental setup
77(1)
12.2.4 Experimental results
78(1)
12.3 Smartphone Experiment II: Diffraction from a Grating and a Hair (Nick Brosnahan, 2020)
79(4)
12.3.1 General Strategy
79(1)
12.3.2 Materials
79(1)
12.3.3 Experimental setup
79(1)
12.3.4 Experimental results
80(1)
References
81(2)
13 Structural Coloration of Butterfly Wings and Peacock Feathers
83(8)
13.1 Introduction
83(2)
13.2 Smartphone Experiment I: Diffraction in a Box--Scale Spacing of Morpho Butterfly Wings (Mary Lalak and Paul Brackman, 2014)
85(2)
13.2.1 General strategy
85(1)
13.2.2 Materials
85(1)
13.2.3 Experimental setup
85(1)
13.2.4 Experimental results
86(1)
13.3 Smartphone Experiment II: Barbule Spacing of Peacock Feathers (Caroline Doctor and Yuta Hagiya, 2019)
87(4)
13.3.1 General strategy
87(1)
13.3.2 Materials
87(1)
13.3.3 Experimental setup
88(1)
13.3.4 Experimental results
88(1)
References
89(2)
14 Optical Rangefinder Based on Gaussian Beam of Lasers
91(8)
14.1 Introduction
91(2)
14.2 Smartphone Experiment I: A Two-laser Optical Rangefinder (Elizabeth McMillan and Jacob Squires, 2014)
93(2)
14.2.1 General strategy
93(1)
14.2.2 Materials
93(1)
14.2.3 Experimental setup
93(1)
14.2.4 Experimental results
94(1)
14.3 Smartphone Experiment II: Estimating the Beam Waist Parameter with a Single Laser (Joo Sung and Connor Skehan, 2015)
95(4)
14.3.1 General strategy
95(1)
14.3.2 Materials
95(1)
14.3.3 Experimental setup
96(2)
14.3.4 Experimental results
98(1)
15 Monochromator
99(8)
15.1 Introduction
99(1)
15.2 Smartphone Experiment I: A Diffractive Monochromator (Nathan Neal, 2018)
100(2)
15.2.1 General strategy
100(1)
15.2.2 Materials
100(1)
15.2.3 Experimental setup
100(2)
15.2.4 Experimental results
102(1)
15.3 Smartphone Experiment II: A Dispersive Monochromator (Myles Popa and Steven Handcock, 2016)
102(5)
15.3.1 General strategy
102(1)
15.3.2 Materials
103(1)
15.3.3 Experimental setup
103(2)
15.3.4 Experimental results
105(2)
16 Optical Spectrometers
107(8)
16.1 Introduction
107(2)
16.2 Smartphone Experiment I: A Diffractive Emission Spectrometer (Helena Gien and David Pearson, 2016)
109(3)
16.2.1 General strategy
109(1)
16.2.2 Materials
109(1)
16.2.3 Experimental setup
109(1)
16.2.4 Experimental results
110(2)
16.3 Smartphone Experiment II: Spectra of Different Combustion Sources (Ryan McArdle and Griffin Dangler, 2016)
112(3)
16.3.1 General strategy
112(1)
16.3.2 Materials
112(1)
16.3.3 Experimental setup
112(1)
16.3.4 Experimental results
113(1)
Reference
114(1)
17 Dispersion
115(6)
17.1 Introduction
115(2)
17.2 Smartphone Experiment (Eric Older and Mario Parra, 2018)
117(4)
17.2.1 General strategy
117(1)
17.2.2 Materials
117(1)
17.2.3 Experimental setup
117(1)
17.2.4 Experimental results
118(1)
Reference
119(2)
18 Beer's Law
121(4)
18.1 Introduction
121(1)
18.2 Smartphone Experiment (Sean Krautheim and Emory Perry, 2018)
122(3)
18.2.1 General strategy
122(1)
18.2.2 Materials
122(1)
18.2.3 Experimental setup
122(1)
18.2.4 Experimental results
123(2)
19 Optical Spectra of Incandescent Lightbulbs and LEDs
125(8)
19.1 Introduction
125(3)
19.2 Smartphone Experiment I: Spectral Radiance of an Incandescent Lightbulb (Tyler Christensen and Ryan Matuszak, 2017)
128(2)
19.2.1 General strategy
128(1)
19.2.2 Materials
129(1)
19.2.3 Experimental setup
129(1)
19.2.4 Experimental results
129(1)
19.3 Smartphone Experiment II: Spectral Radiance of White LED Lightbulbs (Troy Crawford and Rachel Taylor, 2018)
130(3)
19.3.1 General strategy
130(1)
19.3.2 Materials
130(1)
19.3.3 Experimental setup
130(1)
19.3.4 Experimental results
131(1)
References
132(1)
20 Blackbody Radiation of the Sun
133(6)
20.1 Introduction
133(2)
20.2 Smartphone Experiment (Patrick Mullen and Connor Woods, 2015)
135(4)
20.2.1 General Strategy
135(1)
20.2.2 Materials
135(1)
20.2.3 Experimental setup
135(1)
20.2.4 Experimental results
135(1)
References
136(3)
21 Example Course Instructions for Smartphone-based Optical Labs
139(10)
21.1 General Lab Instructions
139(2)
21.1.1 Important notices for students
139(1)
21.1.2 Lab materials
139(1)
21.1.3 Lab instructions
140(1)
21.2 Polarization Labs
141(1)
21.2.1 Required lab materials
141(1)
21.2.2 Lab instruction
141(1)
21.2.3 Additional labs
142(1)
21.3 Reflection Labs
142(1)
21.3.1 Required lab materials
142(1)
21.3.2 Lab instructions
142(1)
21.3.3 Additional labs
143(1)
21.4 Interference Labs
143(2)
21.4.1 Required lab materials
143(1)
21.4.2 Lab instruction
144(1)
21.4.3 Additional labs
144(1)
21.5 Diffraction Labs
145(1)
21.5.1 Required lab materials
145(1)
21.5.2 Lab instruction
145(1)
21.6 Summary of Lab Results
145(4)
Appendix I Materials Used in Labs
149(2)
Appendix II Web Links and Smartphone Applications
151(2)
Appendix III Introduction to ImageJ
153(6)
III.1 Starting ImageJ
153(1)
III.2 ImageJ Menu
153(1)
III.3 ImageJ Toolbar
154(1)
III.4 Image Analysis Example Using ImageJ
154(5)
Reference
158(1)
Appendix IV Connecting the Laser Diode
159