Muutke küpsiste eelistusi

Validation in Thermal Analysis [Kõva köide]

  • Formaat: Hardback, 276 pages, kõrgus x laius x paksus: 299x215x20 mm, kaal: 556 g
  • Ilmumisaeg: 31-Aug-2022
  • Kirjastus: Hanser Publications
  • ISBN-10: 1569909067
  • ISBN-13: 9781569909065
  • Formaat: Hardback, 276 pages, kõrgus x laius x paksus: 299x215x20 mm, kaal: 556 g
  • Ilmumisaeg: 31-Aug-2022
  • Kirjastus: Hanser Publications
  • ISBN-10: 1569909067
  • ISBN-13: 9781569909065

The validation of equipment, processes and methods is a basic requirement that nowadays has to be met in most industries. This handbook deals with the validation of computerized systems in general as well as with analytical method validation. The many detailed practical examples focus on thermal analysis of materials, such as plastics and rubber.


The handbook is intended for newcomers interested in the theoretical and regulatory aspects of validation and for thermal analysis practitioners who have to validate their equipment and methods.

Preface to the First Mettler-Toledo Edition 3(1)
Preface to This Hanser Edition 3(4)
List of Contributors
5(2)
Contents 7(8)
Introduction 15(1)
Part 1 Validation of Computerized Systems
16(95)
1 Changes in Regulations and Regulatory Guidance Since the First Mettler-Toledo Edition
16(10)
1.1 Data Integrity
16(5)
1.1.1 Regulatory Authority Data Integrity Guidance Documents
17(1)
1.1.2 Industry Data Integrity Guidance Documents
18(1)
1.1.3 ALCOA+ Criteria for Integrity of Laboratory Data
18(2)
1.1.4 Static and Dynamic Data
20(1)
1.1.5 Data Integrity Guidance Summary
20(1)
1.2 Updating (EL) Good Manufacturing Practice (GMP) Regulations
21(1)
1.3 USP <1058> Analytical Instrument Qualification
21(2)
1.4 GAMP 5 Guide and Validation of Laboratory Systems Good Practice Guide
23(1)
1.5 Validation of Analytical Procedures
23(1)
1.6 A Data Integrity Model
24(2)
2 Instrument Qualification, Computerized System Validation and Method Validation
26(11)
2.1 Terminology
26(9)
2.1.1 What is a Computerized System?
26(1)
2.1.2 Instrument Calibration and Adjustment
27(1)
2.1.3 Analytical Instrument Qualification (AIQ)
28(2)
2.1.4 Computerized System Validation (CSV)
30(2)
2.1.5 Reconciling Analytical Instrument Qualification and Computerized System Validation
32(1)
2.1.6 Different Aims of Computerized System Validation IQ and OQ
33(1)
2.1.7 Future of the 4Qs Model
33(1)
2.1.8 Analytical Method Validation (AMV)
34(1)
2.1.9 AIQ, CSV and AMV Interrelationships
34(1)
2.2 Apply Validated Methods Using Qualified Instrumentation
35(1)
2.3 Distinguishing between Analytical Instrument Qualification and Method Validation
35(2)
2.3.1 What is Done in AIQ and What is Done in AMV?
36(1)
2.3.2 Impact of AIQ on Method Transfer
36(1)
3 Regulatory Requirements for Computerized System Validation
37(14)
3.1 Regulatory Agencies
37(1)
3.2 Responsibility for Computerized System Validation
37(1)
3.3 Regulations and Guidelines Impacting a Computerized System
38(7)
3.3.1 FDA Good Manufacturing Practice (GMP) 21 CFR Part 211
38(2)
3.3.2 Quality System Regulation for Medical Devices: 21 CFR Part 820
40(1)
3.3.3 ICH Q7(R1): GMP for Active Pharmaceutical Ingredients
40(1)
3.3.4 Electronic Records and Electronic Signatures: 21 CFR Part 11
41(1)
3.3.5 European Union GMP Annex 11 for Computerized Systems
42(2)
3.3.6 FDA Guidance on General Principles of Software Validation
44(1)
3.3.7 FDA Guidance on Computerized Systems Used in Clinical Investigations
44(1)
3.3.8 PIC/S Guidance for Computerized Systems
44(1)
3.3.9 Summary of Regulatory Requirements
45(1)
3.4 ISO 17025: 2017
45(1)
3.5 Warning Letters and Observations Involving Data Integrity and Computerized System
46(5)
3.5.1 Quality Management System Failures
47(1)
3.5.2 Instrument Citations
48(1)
3.5.3 Citations for Lack of Laboratory Controls
49(1)
3.5.4 Failure to Have Complete Laboratory Records
49(1)
3.5.5 Key Data Integrity and CSV Inspection Learning Points
50(1)
4 Computerized System Validation
51(17)
4.1 Why Bother to Validate Your Computerized System?
51(1)
4.2 What is Computerized System Validation (CSV)?
51(7)
4.2.1 Principles of Computerized System Validation
53(2)
4.2.2 Computerized System Validation Assumptions and Misconceptions
55(2)
4.2.3 Problems with Computerized System Validation
57(1)
4.3 Life Cycle Approach to Validation
58(7)
4.3.1 Specifying the System
59(1)
4.3.2 Interpreting the SDLC Deliverables for a Computerized System
60(3)
4.3.3 Limitations of the V Model
63(1)
4.3.4 Flow Chart of Computerized System Validation Activities
64(1)
4.3.5 Document Controls
65(1)
4.4 Computerized System Validation Roles and Responsibilities
65(2)
4.5 Following the Corporate Computerized System Validation Policy
67(1)
5 Writing the User Requirements Specification (URS)
68(8)
5.1 What Do the Regulators Want?
68(1)
5.1.1 FDA, GMP and GLP Predicate Rules
68(1)
5.1.2 European Union GMP
68(1)
5.1.3 PIC/S, Good Practices for Computerized Systems in "GXP" Environments
68(1)
5.1.4 General Principles of Software Validation
68(1)
5.1.5 Regulatory Summary
68(1)
5.2 Business Rationale for Writing a URS
68(1)
5.3 Contents of a Computerized System URS
69(4)
5.3.1 When to Write the URS
69(1)
5.3.2 Link the URS to a Specific Software Version
69(1)
5.3.3 Sections of the URS
69(2)
5.3.4 General Guidance for Writing the Requirements
71(1)
5.3.5 URS Issues to Consider
72(1)
5.3.6 Making the Requirements Traceable
72(1)
5.3.7 Reviewing the URS
73(1)
5.4 Writing Testable Requirements
73(2)
5.4.1 How Not To Do It
73(1)
5.4.2 Writing Well-Formed and Testable Requirements
74(1)
5.4.3 Key Criteria for User Requirements
75(1)
5.5 Documenting System Configuration and Customization
75(1)
6 Auditing the System Supplier
76(9)
6.1 What Do the Regulators Want?
76(1)
6.1.1 Preamble to 21 CFR Part 11 Final Rule
76(1)
6.1.2 PIC/S Guidance, Good Practices for Computerized Systems in "GXP" Environments
76(1)
6.1.3 EU GMP Annex 11
76(1)
6.1.4 Regulatory Requirements Summary
76(1)
6.2 Rationale for a Supplier Audit
77(2)
6.2.1 ISO 9001: Saint or Sinner?
77(1)
6.2.2 ISO 9001 and ISO 90003
77(1)
6.2.3 Marketing Literature and Contracts
78(1)
6.3 When Do I Audit the Computerized System Supplier?
79(1)
6.3.1 On-Site or Remote Audit?
79(1)
6.3.2 Remote Supplier Audit
79(1)
6.4 On-Site Supplier Audits
80(5)
6.4.1 The Scope of an On-Site Audit
82(1)
6.4.2 The Role of an Audit Checklist
83(1)
6.4.3 Writing the Report
84(1)
6.4.4 Using the Supplier Audit to Reduce PQ Testing
84(1)
7 Installation Qualification and Operational Qualification (IQ and OQ)
85(5)
7.1 What Do The Regulators Want?
85(1)
7.1.1 EU GMP Annex 11
85(1)
7.1.2 PIC/S Guidance, Good Practices for Computerized Systems in "GXP" Environments
85(1)
7.1.3 General Principles of Software Validation
85(1)
7.1.4 Regulatory Summary
85(1)
7.2 Reconciling Analytical Instrument Qualification and Computer Validation
86(1)
7.2.1 Different Aims of Computer Validation IQ and OQ
86(1)
7.3 Installation Qualification (IQ)
87(1)
7.3.1 Establish the Initial Computerized System Configuration Baseline Now
87(1)
7.4 Operational Qualification (OQ)
88(2)
7.4.1 Contents of an Operational Qualification Package
88(1)
7.4.2 Evaluate the Supplier's Qualification Documentation
89(1)
8 Performance Qualification (PQ) or End User Testing
90(21)
8.1 What Do The Regulators Want?
90(2)
8.1.1 EU GMP Annex 11
90(1)
8.1.2 FDA General Principles of Software Validation
90(1)
8.1.3 FDA's New CSV Approach: Computer System Assurance (CSA)
91(1)
8.1.4 Regulatory Requirements Summary
91(1)
8.2 Principles of Software Testing
92(3)
8.2.1 Testing Approach
93(1)
8.2.2 Types of Software Testing
93(1)
8.2.3 Test Approach: White Box or Black Box Testing?
93(1)
8.2.4 Manual or Automated Testing?
94(1)
8.2.5 Planning What to Test
94(1)
8.2.6 New Data System Features? Update the URS!
95(1)
8.3 PQ Test Plan
95(2)
8.3.1 Tracing User Requirements to PQ Testing
97(1)
8.3.2 Assumptions, Exclusions and Limitations of the Test Approach
97(1)
8.4 PQ Test Scripts
97(4)
8.4.1 Features to Test in any Computerized System
98(1)
8.4.2 Write the Test Scripts
99(1)
8.4.3 Outline Test Case Design
100(1)
8.5 Defining, Documenting and Testing System Security
101(3)
8.5.1 Is the Requirement You Are Testing Specified?
101(2)
8.5.2 Designing the Tests
103(1)
8.5.3 Risk Analysis: Extent of Testing?
103(1)
8.5.4 Refining the Test Design
104(1)
8.6 PQ Test Documentation
104(4)
8.6.1 Key Test Scri pt Sections
104(1)
8.6.2 Documenting Test Execution Instructions and Expected Results
104(2)
8.6.3 Writing Observed Results
106(1)
8.6.4 Unexpected Results
106(1)
8.6.5 Suggested Documentation
107(1)
8.6.6 Documenting Observed Results
107(1)
8.7 Collating Documented Evidence
108(3)
8.7.1 Has the Test Passed or Failed?
108(1)
8.7.2 Some Considerations for Testing Electronic Signatures
108(1)
8.7.3 Handling Testing Deviations
109(2)
Part 2 Method Validation
111(154)
1 Measurement Errors and Uncertainty of Measurement
111(28)
1.1 Introductory Comments
111(1)
1.2 Systematic Measurement Errors
112(1)
1.2.1 Propagation of Systematic Measurement Errors
112(1)
1.3 Random Measurement Errors
113(3)
1.4 Possible Causes of Measurement Errors
116(4)
1.4.1 Influence of the Method
116(1)
1.4.2 Instrumental Influences
117(1)
1.4.3 Sampling and Sample Preparation
118(1)
1.4.4 Environmental Influences
118(1)
1.4.5 Laboratory Bias
119(1)
1.4.6 Time-dependent Interdependencies
119(1)
1.4.7 Parameters for the Measurement Method and Evaluation
119(1)
1.4.8 Shortcomings of the Analyst
120(1)
1.4.9 Measurement Errors due to "Gross Errors"
120(1)
1.5 Detection and Elimination of Measurement Errors
120(1)
1.5.1 Checking the Theoretical Basis
120(1)
1.5.2 Changing the Measurement Conditions
121(1)
1.5.3 Choosing a Different Measuring Method
121(1)
1.5.4 Using Methods that Largely Exclude Systematic Measurement Errors
121(1)
1.5.5 Interlaboratory Studies
121(1)
1.6 Uncertainty of Measurement
121(18)
1.6.1 What is Measurement Uncertainty?
121(2)
1.6.2 Different Types of Uncertainty
123(2)
1.6.3 Procedure to Determine Measurement Uncertainty
125(3)
1.6.4 Example 1: Glass Transition Temperature and Tolerances
128(1)
1.6.5 Example 2: Estimation of the Uncertainty of the Enthalpy of Fusion in a DSC Measurement
129(2)
1.6.6 Example 3: Uncertainty Estimation of the Modulus of an Elastomer in the Rubbery Plateau
131(1)
1.6.6.1 Procedure
131(1)
1.6.6.2 Results
132(7)
2 Validation of Analytical Procedures and Methods
139(18)
2.1 Introduction
139(4)
2.1.1 Definitions
141(1)
2.1.2 Basic principles of the validation
142(1)
2.1.3 Validation Documentation
142(1)
2.1.4 Frequency of Validation
142(1)
2.2 Performance parameters
143(14)
2.2.1 Trueness, Precision and Accuracy
145(4)
2.2.2 Linearity
149(1)
2.2.3 Robustness
150(1)
2.2.4 Selectivity and Specificity
151(1)
2.2.5 Limit of Detection
151(2)
2.2.6 Limit of Quantitation
153(1)
2.2.7 Range
153(1)
2.2.8 Stability
153(1)
2.2.9 Assessing Method Capability/Process Capability
154(3)
3 Interlaboratory Studies in Thermal Analysis
157(16)
3.1 Introduction
157(5)
3.1.1 Purpose of Interlaboratory Studies
157(1)
3.1.2 Conducting Interlaboratory Studies
158(1)
3.1.3 Performance Parameters from Interlaboratory Studies
159(1)
3.1.4 Benefits of Interlaboratory Studies
160(1)
3.1.5 Limits of Intestability of Interlaboratory Studies
161(1)
3.2 Interlaboratory Studies using DSC
162(7)
3.2.1 Determination of the Oxidation Induction Time and Oxidation Onset Temperature
162(4)
3.2.2 Glass Transition Temperature
166(1)
3.2.3 Crystallinity and Melting Point
167(1)
3.2.4 Curing Reactions of Epoxy Resins
168(1)
3.3 Interlaboratory Studies using Thermogravimetry
169(3)
3.3.1 Plasticizer Determination
169(1)
3.3.2 Carbon Black Content of Polymer Compounds
170(1)
3.3.3 Ash Content of Polymer Compounds
171(1)
3.4 Summary
172(1)
4 Method Development Through to SOP
173(13)
4.1 Introductory Comments
173(2)
4.2 Method Development in Thermal Analysis
175(11)
4.2.1 Introduction
175(1)
4.2.2 Step 1: Choosing the Right Measurement Technique
176(2)
4.2.3 Step 2: Sampling and Preparation of the Test Specimen
178(2)
4.2.4 Step 3: Choosing the Crucible (only DSC and TGA)
180(1)
4.2.5 Step 4: Choosing the Temperature Program
180(2)
4.2.6 Step 5: Choosing the Atmosphere
182(1)
4.2.7 Step 6: Examining the Test Specimen after the Measurement
183(1)
4.2.8 Step 7: Evaluation
184(1)
4.2.9 Step 8: Validation
184(1)
4.2.10 Conclusions
184(2)
5 Practical Examples
186(79)
5.1 Validation of a DSC Method for the Determination of Tg of Polystyrene
186(9)
5.1.1 Scenario
186(1)
5.1.2 Development of a Draft SOP
186(7)
5.1.3 Validation
193(1)
5.1.4 SOP of the Validated Method
194(1)
5.2 Validation of the DSC Purity Determination of Ethyl 4-hydroxybenzoate
195(6)
5.2.1 Introduction
195(1)
5.2.2 Draft SOP
196(1)
5.2.3 Validation
197(4)
5.3 Determination of the Carbon Black Filler Content of SBR by TGA
201(6)
5.3.1 Introduction
201(1)
5.3.2 Draft SOP Based on a Test Method Used in an Interlaboratory Study
202(1)
5.3.3 Validation
203(3)
5.3.4 Validated SOP
206(1)
Appendix 1 21 CFR Part 11 and EU GMP Annex 11
207(1)
1 What is 21 CFR Part 11?
207(1)
2 EU GMP Annex 11
207(1)
3 Overview of the Main Features of the Regulations
208(1)
3.1 21 CFR Part 11
208(1)
3.2 Main Aims of the Part 11 Regulation
208(1)
3.3 EU GMP Annex 11
208(1)
4 Key Definitions in 21 CFR Part 11 and Annex 11
209(2)
4.1 21 CFR 11
209(1)
4.1.1 Electronic Record
209(1)
4.1.2 Open and Closed System
209(1)
4.1.3 Electronic Signature
210(1)
4.2 Annex 11
210(1)
4.2.1 Process Owner and System Owner
210(1)
4.2.2 No Classification of Open and Closed System
210(1)
5 Interpretation of Part 11 and Annex 11
211(1)
5.1 Interpretation of Part 11 Using Existing Predicate Rules
211(1)
5.2 Interpretation of Annex 11 by EU GMP
Chapter 4 on Documentation
211(1)
6 Part 11 is an Integrated Regulation
212(1)
7 You Cannot Purchase a 21 CFR 11/Annex 11 Compliant System
212(2)
7.1 Types of 21 CFR Part 11 / Annex 11 Controls
212(1)
7.2 Annex 11 Has Only Technical and Procedural Controls
213(1)
8 Electronic Records
214(6)
8.1 Overview of Sub-Part B (Electronic Records)
214(1)
8.2 What are Electronic Records?
214(1)
8.3 Training of all Staff involved with the System
215(1)
8.4 System Security
215(1)
8.5 Audit Trail
215(1)
8.6 Checks
216(1)
8.7 Archival of Records
217(1)
8.8 Copying of Records
217(1)
8.9 Electronic Records
217(1)
8.10 Electronic Signatures
217(2)
8.11 Linking Electronic Signatures with Electronic Records
219(1)
8.11.1 Signing Sessions
219(1)
9 Impact of 21 CFR 11 on Analytical Laboratories
220(1)
9.1 Moving from Paper to Electronic Records
220(1)
9.2 Hybrid Systems
220(1)
10 Controls Required for 21 CFR Part 11 Compliance
221(2)
11 Implementing a 21 CFR Part 11 Compliant System
223(5)
12 Are Complete Data and Raw Data the Same?
228(4)
12.1.1 EU GMP
Chapter 4 and Raw Data
228(1)
12.1.2 No EU GMP Definition of Raw Data
229(1)
12.1.3 MHRA GXP Data Integrity Guidance
229(1)
12.1.4 US and OECD GLP Regulations
229(1)
12.1.5 What About Raw Data in GMP?
230(1)
12.1.6 Understanding Complete Data
230(1)
12.1.7 Are Raw Data and Complete Data the Same?
231(1)
Appendix 2 Basic Statistics
232(1)
1 Descriptive Statistics
232(6)
1.1 Histogram
232(2)
1.2 Statistical Parameters
234(1)
1.2.1 Measures of Location
235(1)
1.2.2 Measures of Spread
236(1)
1.3 Estimating Statistical Parameters for a Population
237(1)
2 The Normal or Gaussian distribution
238(3)
3 Inferential Statistics
241(16)
3.1 Confidence Interval
241(1)
3.1.1 Confidence Interval for the Mean
242(1)
3.1.2 Confidence Interval for the Standard Deviation
243(1)
3.1.3 Confidence Intervals as a "Test Statistic"
244(1)
3.2 Hypothesis Testing
244(4)
3.2.1 T-Test: Comparison of a Mean with a Target Value
248(1)
3.2.2 T-Test: Comparison of Mean Values of Two Normal Distributions
249(1)
3.2.3 F-Test: Comparison of the Variances of Two Normal Distributions
250(1)
3.2.4 X2-Test
251(1)
3.2.5 Outlier test
252(2)
3.3 The Correlation Coefficient
254(1)
3.4 Linear Regression
255(2)
4 Statistical Tables
257(8)
4.1 Standard Normal Distribution
257(1)
4.2 P-Quantiles of the T-Distribution
258(1)
4.3 95%-Quantiles of the F-Distribution
259(1)
4.4 97.5%-Quantiles of the F-Distribution
260(1)
4.5 99%-Quantiles of the F-Distribution
261(1)
4.6 P-Quantiles of the X2-Distribution
262(1)
4.7 Critical values for the Dixon Test
263(2)
Appendix 3 Standard Test Methods for Thermal Analysis
265(1)
List of Acronyms 265(2)
References 267(6)
Index 273
Dr. Markus Schubnell is a Thermal Analysis Application Specialist at Mettler-Toledo International, Inc., Switzerland. He coordinated this writing of this book with support form several colleagues in the Materials Characterization Support Group at Mettler-Toledo, and from industry and academic experts elsewhere.