Muutke küpsiste eelistusi

Vector Coherent State Method and Its Application to Problems of Higher Symmetries Softcover reprint of the original 1st ed. 1987 [Pehme köide]

  • Formaat: Paperback / softback, 154 pages, kõrgus x laius: 244x170 mm, kaal: 296 g, V, 154 p., 1 Paperback / softback
  • Sari: Lecture Notes in Physics 290
  • Ilmumisaeg: 20-Nov-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662136333
  • ISBN-13: 9783662136331
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 154 pages, kõrgus x laius: 244x170 mm, kaal: 296 g, V, 154 p., 1 Paperback / softback
  • Sari: Lecture Notes in Physics 290
  • Ilmumisaeg: 20-Nov-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662136333
  • ISBN-13: 9783662136331
These lectures review the recently developed vector coherent state method. The book is an excellent introduction to the field because of the many examples treated in detail, in particular those from nuclear and particle physics. These calculations will be welcomed by researchers and graduate students. The author reviews the concepts of coherent states of the Heisenberg algebra and shows then that the vector coherent state method maps the higher symmetry algebra into an n-dimensional harmonic oscillator algebra coupled with a simple intrinsic symmetry algebra. The formulation involves some vector (or analogous higher symmetry) coupling of the intrinsic algebra with the n-dimensional oscillator algebra, leading to matrix representations and Wigner coefficients of the higher symmetry algebra expressed in terms of simple calculable functions and recoupling coefficients for the simpler intrinsic algebra.

Muu info

Springer Book Archives
1. Introduction.-
2. The vector coherent state method.-
3. Detailed examples.-
4. Other applications.-
5. The calculation of SU(3) Wigner coefficients.-
6. An indirect application of vector coherent state theory: Construction of a group theoretically sound orthonormal Wigner supermultiplet basis.