Muutke küpsiste eelistusi

Vector fields on Singular Varieties 2010 ed. [Pehme köide]

  • Formaat: Paperback / softback, 232 pages, kõrgus x laius: 235x155 mm, kaal: 800 g, XX, 232 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1987
  • Ilmumisaeg: 17-Dec-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642052045
  • ISBN-13: 9783642052040
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 232 pages, kõrgus x laius: 235x155 mm, kaal: 800 g, XX, 232 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1987
  • Ilmumisaeg: 17-Dec-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642052045
  • ISBN-13: 9783642052040
Vector eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.

Arvustused

From the reviews:

This book is dedicated to the study of indices of vector fields and flows around an isolated singularity, or stationary point, in the cases where the underlying space is either a manifold or a singular variety. The book gives a thorough presentation of the results, old and new, related to indices of vector fields on singular varieties and is a valuable reference for both the specialist and the non-specialist. (M. G. Soares, Mathematical Reviews, Issue 2011 d)

The Case of Manifolds.- The Schwartz Index.- The GSV Index.- Indices of
Vector Fields on Real Analytic Varieties.- The Virtual Index.- The Case of
Holomorphic Vector Fields.- The Homological Index and Algebraic Formulas.-
The Local Euler Obstruction.- Indices for 1-Forms.- The Schwartz Classes.-
The Virtual Classes.- Milnor Number and Milnor Classes.- Characteristic
Classes of Coherent Sheaves on Singular Varieties.