Muutke küpsiste eelistusi

Vision, Sensing and Analytics: Integrative Approaches 2021 ed. [Kõva köide]

  • Formaat: Hardback, 413 pages, kõrgus x laius: 235x155 mm, kaal: 799 g, 81 Illustrations, color; 44 Illustrations, black and white; X, 413 p. 125 illus., 81 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 207
  • Ilmumisaeg: 06-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030754898
  • ISBN-13: 9783030754891
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 413 pages, kõrgus x laius: 235x155 mm, kaal: 799 g, 81 Illustrations, color; 44 Illustrations, black and white; X, 413 p. 125 illus., 81 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 207
  • Ilmumisaeg: 06-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030754898
  • ISBN-13: 9783030754891

This book serves as the first guideline of the integrative approach, optimal for our new and young generations. Recent technology advancements in computer vision, IoT sensors, and analytics open the door to highly impactful innovations and applications as a result of effective and efficient integration of those. Such integration has brought to scientists and engineers a new approach —the integrative approach. This offers far more rapid development and scalable architecting when comparing to the traditional hardcore developmental approach.

Featuring biomedical and healthcare challenges including COVID-19, we present a collection of carefully selective cases with significant added- values as a result of integrations, e.g., sensing with AI, analytics with different data sources, and comprehensive monitoring with many different sensors, while sustaining its readability.


Deep Architectures in Visual Transfer Learning.- Deep Reinforcement
Learning: A New Frontier in Computer Vision Research.- Deep Learning for
Data-driven Predictive Maintenance.- Multi-Criteria Fuzzy Goal Programming
under Multi-Uncertainty.- Skeleton-based Human Action Recognition on
Large-Scale Datasets.