Preface |
|
iii | |
Acknowledgements |
|
iv | |
|
Chapter 0 Getting Started with Maple |
|
|
1 | (38) |
|
|
1 | (17) |
|
Basics of Graphing in Maple |
|
|
18 | (17) |
|
|
35 | (4) |
|
Chapter 1 An Introduction to Maple commands |
|
|
39 | (35) |
|
|
39 | (24) |
|
|
63 | (1) |
|
|
64 | (4) |
|
|
68 | (6) |
|
|
74 | (51) |
|
|
74 | (1) |
|
Limits using Maple Commands |
|
|
75 | (6) |
|
|
81 | (9) |
|
Intermediate Value Theorem |
|
|
90 | (2) |
|
|
92 | (5) |
|
The Precise Definition of a Limit |
|
|
97 | (8) |
|
|
105 | (6) |
|
|
111 | (4) |
|
|
115 | (10) |
|
|
125 | (33) |
|
Definition of the Derivative |
|
|
125 | (1) |
|
Equation of a Tangent Line |
|
|
126 | (3) |
|
Step-by-step Differentiation |
|
|
129 | (8) |
|
Applications of the Derivative |
|
|
137 | (1) |
|
|
138 | (7) |
|
|
145 | (3) |
|
|
148 | (5) |
|
|
153 | (5) |
|
Chapter 4 Graphs of Functions Using Limits and Derivatives |
|
|
158 | (41) |
|
|
158 | (1) |
|
|
159 | (35) |
|
|
194 | (5) |
|
Chapter 5 Applications of Differentiation |
|
|
199 | (30) |
|
|
199 | (2) |
|
|
201 | (2) |
|
|
203 | (7) |
|
|
210 | (3) |
|
|
213 | (3) |
|
|
216 | (5) |
|
|
221 | (8) |
|
|
229 | (30) |
|
|
229 | (17) |
|
Simpson's Rule and the Trapezoidal Rule |
|
|
246 | (8) |
|
|
254 | (5) |
|
Chapter 7 Integration Techniques |
|
|
259 | (36) |
|
Definite and Indefinite Integrals |
|
|
259 | (6) |
|
|
265 | (1) |
|
|
266 | (4) |
|
|
270 | (3) |
|
|
273 | (8) |
|
Trigonometric Substitution |
|
|
281 | (4) |
|
Integration of Rational Functions using Partial Fractions |
|
|
285 | (7) |
|
|
292 | (3) |
|
Chapter 8 Applications of Integration |
|
|
295 | (27) |
|
|
295 | (3) |
|
|
298 | (12) |
|
|
310 | (2) |
|
|
312 | (4) |
|
Average Value of a Function |
|
|
316 | (2) |
|
|
318 | (4) |
|
Chapter 9 Differential Equations |
|
|
322 | (28) |
|
|
322 | (1) |
|
First Order Differential Equations |
|
|
322 | (10) |
|
Higher Order Differential Equations |
|
|
332 | (6) |
|
Bernoulli Differential Equations |
|
|
338 | (2) |
|
Non Linear Differential Equations |
|
|
340 | (2) |
|
|
342 | (2) |
|
|
344 | (3) |
|
|
347 | (3) |
|
Chapter 10 Sequences and Series |
|
|
350 | (32) |
|
|
350 | (5) |
|
|
355 | (11) |
|
|
366 | (2) |
|
|
368 | (3) |
|
Taylor and Maclaurin Series |
|
|
371 | (7) |
|
|
378 | (4) |
|
Chapter 11 Parametric and Polar Curves |
|
|
382 | (23) |
|
|
382 | (8) |
|
|
390 | (12) |
|
|
402 | (3) |
|
Chapter 12 Matrices and Vectors |
|
|
405 | (28) |
|
|
405 | (12) |
|
|
417 | (13) |
|
|
430 | (3) |
|
Chapter 13 Limits and Continuity of Multivariate Functions |
|
|
433 | (19) |
|
|
433 | (1) |
|
|
434 | (5) |
|
|
439 | (11) |
|
|
450 | (2) |
|
Chapter 14 Partial Derivatives |
|
|
452 | (34) |
|
|
452 | (9) |
|
|
461 | (2) |
|
|
463 | (1) |
|
Local Maxima, Local Minima, and Saddle Points |
|
|
464 | (8) |
|
|
472 | (3) |
|
Gradient and Directional Derivatives |
|
|
475 | (6) |
|
|
481 | (5) |
|
Chapter 15 Multiple Integrals |
|
|
486 | (39) |
|
|
486 | (17) |
|
|
503 | (5) |
|
|
508 | (2) |
|
|
510 | (2) |
|
|
512 | (4) |
|
|
516 | (4) |
|
|
520 | (5) |
|
Chapter 16 Vector Analysis |
|
|
525 | (20) |
|
Line Integrals and Vector Fields |
|
|
525 | (6) |
|
Conservative Vector Fields |
|
|
531 | (5) |
|
|
536 | (1) |
|
|
537 | (2) |
|
|
539 | (3) |
|
|
542 | (3) |
Appendix A With (Packages) |
|
545 | (5) |
Appendix B Maple Commands |
|
550 | (19) |
Appendix C References |
|
569 | (1) |
Index |
|
570 | |