Muutke küpsiste eelistusi

VISUALIZING CALCULUS BY WAY OF MAPLE: AN EMPHASIS ON PROBLEM SOLVING [Pehme köide]

  • Formaat: Paperback / softback, 592 pages, kõrgus x laius x paksus: 272x216x20 mm, kaal: 1145 g, 0 Illustrations
  • Ilmumisaeg: 16-May-2011
  • Kirjastus: McGraw-Hill Professional
  • ISBN-10: 0078035988
  • ISBN-13: 9780078035982
Teised raamatud teemal:
  • Formaat: Paperback / softback, 592 pages, kõrgus x laius x paksus: 272x216x20 mm, kaal: 1145 g, 0 Illustrations
  • Ilmumisaeg: 16-May-2011
  • Kirjastus: McGraw-Hill Professional
  • ISBN-10: 0078035988
  • ISBN-13: 9780078035982
Teised raamatud teemal:
Preface iii
Acknowledgements iv
Chapter 0 Getting Started with Maple
1(38)
The Basics
1(17)
Basics of Graphing in Maple
18(17)
Exercises
35(4)
Chapter 1 An Introduction to Maple commands
39(35)
More Graphs
39(24)
Arrays
63(1)
Piecewise Functions
64(4)
Exercises
68(6)
Chapter 2 Limits
74(51)
Basic Definitions
74(1)
Limits using Maple Commands
75(6)
Step-by-step Limits
81(9)
Intermediate Value Theorem
90(2)
Arrays and Limits
92(5)
The Precise Definition of a Limit
97(8)
Limits at Infinity
105(6)
Asymptotes
111(4)
Exercises
115(10)
Chapter 3 Derivatives
125(33)
Definition of the Derivative
125(1)
Equation of a Tangent Line
126(3)
Step-by-step Differentiation
129(8)
Applications of the Derivative
137(1)
Implicit Differentiation
138(7)
Linear Approximation
145(3)
Differentials
148(5)
Exercises
153(5)
Chapter 4 Graphs of Functions Using Limits and Derivatives
158(41)
Definitions
158(1)
Graphs of Functions
159(35)
Exercises
194(5)
Chapter 5 Applications of Differentiation
199(30)
Extreme Value Theorem
199(2)
Rolle's Theorem
201(2)
Mean Value Theorem
203(7)
Newton's Method
210(3)
Related Rates
213(3)
Optimization
216(5)
Exercises
221(8)
Chapter 6 Integration
229(30)
Riemann Sums
229(17)
Simpson's Rule and the Trapezoidal Rule
246(8)
Exercises
254(5)
Chapter 7 Integration Techniques
259(36)
Definite and Indefinite Integrals
259(6)
Step-by-step Integration
265(1)
Substitution Rule
266(4)
Integration by Parts
270(3)
Trigonometric Integrals
273(8)
Trigonometric Substitution
281(4)
Integration of Rational Functions using Partial Fractions
285(7)
Exercises
292(3)
Chapter 8 Applications of Integration
295(27)
Area between Curves
295(3)
Volume of Revolution
298(12)
Arc Length
310(2)
Surface Area
312(4)
Average Value of a Function
316(2)
Exercises
318(4)
Chapter 9 Differential Equations
322(28)
Definitions
322(1)
First Order Differential Equations
322(10)
Higher Order Differential Equations
332(6)
Bernoulli Differential Equations
338(2)
Non Linear Differential Equations
340(2)
Direction Fields
342(2)
Euler's Method
344(3)
Exercises
347(3)
Chapter 10 Sequences and Series
350(32)
Sequences
350(5)
Series
355(11)
Geometric Series
366(2)
Power Series
368(3)
Taylor and Maclaurin Series
371(7)
Exercises
378(4)
Chapter 11 Parametric and Polar Curves
382(23)
Parametric Curves
382(8)
Polar Curves
390(12)
Exercises
402(3)
Chapter 12 Matrices and Vectors
405(28)
Matrices
405(12)
Vectors
417(13)
Exercises
430(3)
Chapter 13 Limits and Continuity of Multivariate Functions
433(19)
Definitions
433(1)
Contour Curves
434(5)
Limits and Continuity
439(11)
Exercises
450(2)
Chapter 14 Partial Derivatives
452(34)
Partial Derivatives
452(9)
Tangent Planes
461(2)
Linearization
463(1)
Local Maxima, Local Minima, and Saddle Points
464(8)
Vector Functions
472(3)
Gradient and Directional Derivatives
475(6)
Exercises
481(5)
Chapter 15 Multiple Integrals
486(39)
Double Integrals
486(17)
Triple Integrals
503(5)
Cylindrical Coordinates
508(2)
Spherical Coordinates
510(2)
Center of Mass
512(4)
Jacobian Function
516(4)
Exercises
520(5)
Chapter 16 Vector Analysis
525(20)
Line Integrals and Vector Fields
525(6)
Conservative Vector Fields
531(5)
Green's Theorem
536(1)
Stokes' Theorem
537(2)
Surface Integral
539(3)
Exercises
542(3)
Appendix A With (Packages) 545(5)
Appendix B Maple Commands 550(19)
Appendix C References 569(1)
Index 570