Muutke küpsiste eelistusi

Wavelength Division Multiplexing: A Practical Engineering Guide [Kõva köide]

  • Formaat: Hardback, 432 pages, kõrgus x laius x paksus: 244x165x26 mm, kaal: 703 g
  • Sari: Wiley Series in Pure and Applied Optics
  • Ilmumisaeg: 29-Nov-2013
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 0470623020
  • ISBN-13: 9780470623022
  • Formaat: Hardback, 432 pages, kõrgus x laius x paksus: 244x165x26 mm, kaal: 703 g
  • Sari: Wiley Series in Pure and Applied Optics
  • Ilmumisaeg: 29-Nov-2013
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 0470623020
  • ISBN-13: 9780470623022
In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view-- In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, thetext provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rates is given as well.Key features: Considers WDM from ULH backbone (big picture view) down to PON access (micro view). Includes all major telecom and datacom applications. Provides the relevant background for state-of-the-art and next-gen systems. Offers practical guidelines for system / link engineering. -- In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rates is given as well.Key features:Considers WDM from ULH backbone (big picture view) down to PON access (micro view). Includes all major telecom and datacom applications. Provides the relevant background for state-of-the-art and next-gen systems. Offers practical guidelines for system / link engineering.

Arvustused

This book would be an excellent reference for advanced undergraduate students and graduate researchers, as well as professional engineers.  (Optics & Photonics News, 6 June 2014)

Acknowledgments xi
1 Introduction to WDM 1(6)
1.1 WDM Theory,
1(1)
1.2 History of WDM,
2(2)
References,
4(3)
2 Optical Fiber Effects 7(48)
2.1 Linear Effects,
7(18)
2.1.1 Attenuation,
8(3)
2.1.1.1 Intrinsic Loss,
8(1)
2.1.1.2 Fiber Bending Loss,
9(2)
2.1.1.3 Polarization-Dependent Loss,
11(1)
2.1.2 Chromatic Dispersion,
11(5)
2.1.3 Polarization-Mode Dispersion,
16(9)
2.1.3.1 PMD and DGD,
16(7)
2.1.3.2 PMD in Recirculating Loops,
23(1)
2.1.3.3 Real-World Fiber Plant PMD Audits,
23(2)
2.2 Nonlinear Fiber Effects,
25(26)
2.2.1 Kerr Effects,
25(21)
2.2.1.1 Self-Phase Modulation,
29(5)
2.2.1.2 Cross-Phase Modulation,
34(2)
2.2.1.3 Cross-Polarization Modulation,
36(1)
2.2.1.4 Four-Wave Mixing,
37(6)
2.2.1.5 Modulation Instability,
43(1)
2.2.1.6 Nonlinear Phase Noise,
43(3)
2.2.2 Scattering Effects,
46(9)
2.2.2.1 Stimulated Raman Scattering,
46(3)
2.2.2.2 Brillouin Scattering,
49(2)
References,
51(4)
3 Components and Subsystems 55(122)
3.1 Transmitters,
55(29)
3.1.1 Laser Diodes,
55(15)
3.1.1.1 Principle of Diode Lasers,
55(7)
3.1.1.2 Fabry-Perot Laser Diodes,
62(1)
3.1.1.3 Distributed Feedback and Distributed Bragg Reflector Laser Diodes,
63(1)
3.1.1.4 Vertical-Cavity Surface-Emitting Lasers,
64(1)
3.1.1.5 Tunable Laser Diodes,
64(6)
3.1.2 External Modulators,
70(10)
3.1.2.1 Electroabsorption Modulators,
71(3)
3.1.2.2 Electro-Optic Modulators,
74(3)
3.1.2.3 Reflective Semiconductor Optical Amplifiers,
77(3)
3.1.3 Direct-Modulation Techniques,
80(4)
3.1.3.1 Directly Modulated Laser,
80(1)
3.1.3.2 Dispersion-Supported Transmission,
81(1)
3.1.3.3 Chirp-Managed Laser,
82(2)
3.2 Transmission Line,
84(51)
3.2.1 Single-Mode Fiber Types,
84(3)
3.2.2 Novel and Specialty Fibers,
87(4)
3.2.2.1 Few-Mode Fibers,
87(1)
3.2.2.2 Multicore Fibers,
88(1)
3.2.2.3 Polymer Optical Fibers,
89(1)
3.2.2.4 PCF and PBG Fibers,
89(2)
3.2.3 Fiber-Optic Cables,
91(2)
3.2.4 Optical Amplifiers,
93(11)
3.2.4.1 EDFAs and Other Rare-Earth-Doped Fiber Amplifiers,
94(6)
3.2.4.2 Raman Amplifiers,
100(1)
3.2.4.3 Semiconductor Optical Amplifiers,
101(3)
3.2.5 Dispersion Compensation,
104(7)
3.2.5.1 Dispersion-Compensating Fibers,
105(2)
3.2.5.2 Chirped Fiber Gratings,
107(2)
3.2.5.3 Self-Phase Modulation (Soliton Effect),
109(1)
3.2.5.4 TODC,
110(1)
3.2.6 Passive WDM Filters and Couplers,
111(18)
3.2.6.1 Fused Couplers,
112(2)
3.2.6.2 Thin-Film Filters,
114(1)
3.2.6.3 Arrayed Waveguide Gratings,
115(3)
3.2.6.4 Fiber Bragg Gratings,
118(1)
3.2.6.5 Interleavers (Mach-Zehnder Interferometer),
119(1)
3.2.6.6 Tunable Filters,
120(5)
3.2.6.7 Wavelength Switching Devices,
125(4)
3.2.7 ROADMs and OXCs,
129(6)
3.2.7.1 ROADM Structures,
129(1)
3.2.7.2 Multidegree WSS,
130(3)
3.2.7.3 Optical Cross-Connects,
133(2)
3.3 Receivers,
135(11)
3.3.1 Photodiodes,
135(4)
3.3.1.1 PIN Photodiodes,
135(2)
3.3.1.2 Avalanche Photodiodes,
137(2)
3.3.2 Electronic Amplifiers,
139(4)
3.3.2.1 TIA,
139(3)
3.3.2.2 Limiting Amplifier,
142(1)
3.3.3 Pluggable Transceivers for WDM,
143(3)
3.4 Digital Electronics,
146(16)
3.4.1 SERDES,
146(4)
3.4.1.1 Serializer,
147(1)
3.4.1.2 Deserializer,
148(2)
3.4.2 Forward Error Correction,
150(8)
3.4.2.1 FEC Basics,
151(2)
3.4.2.2 Cyclic Codes,
153(2)
3.4.2.3 Code Concatenation and Iterative Decoding,
155(3)
3.4.3 Electronic Distortion Compensation,
158(4)
References,
162(15)
4 Nonfiber-Related Effects 177(20)
4.1 Linear Cross Talk,
177(4)
4.2 Noise in Optical Transmission Systems,
181(12)
4.2.1 Noise in Optical Receivers,
182(4)
4.2.2 Receiver Sensitivities,
186(1)
4.2.3 Noise Figures and OSNR in Optical Amplifier Chains,
187(6)
References,
193(4)
5 Modulation Formats For WDM 197(56)
5.1 Basic Modulation,
197(5)
5.2 Pulse Shaping,
202(4)
5.3 Modulation Formats,
206(25)
5.3.1 Amplitude Modulation,
207(8)
5.3.1.1 On-Off Keying (00K),
207(2)
5.3.1.2 Detailed Derivation of OSNR Tolerance of Directly Detected 00K,
209(4)
5.3.1.3 Multilevel Amplitude Modulation,
213(2)
5.3.2 Phase Modulation,
215(5)
5.3.2.1 Phase-Shift Keying,
215(1)
5.3.2.2 DPSK with Direct Detection,
216(2)
5.3.2.3 (D)XPSK,
218(2)
5.3.3 QAM-Combined Amplitude and Phase Modulation,
220(1)
5.3.4 Optical Noise Tolerance of Multilevel Modulation Formats,
221(3)
5.3.5 Partial Response Signaling,
224(5)
5.3.5.1 Optical Duobinary,
224(4)
5.3.5.2 Higher Order and Quadrature Partial Response,
228(1)
5.3.6 Frequency-Shift Keying,
229(1)
5.3.7 Polarization Modulation and Interleaving,
230(1)
5.4 Coherent Intradyne Dual-Polarization QAM Detection,
231(9)
5.5 Optical OFDM,
240(3)
5.6 Comparison of Modulation Formats,
243(4)
References,
247(6)
6 System Realization 253(74)
6.1 Access Networks,
253(24)
6.1.1 CWDM Access and Backhaul,
254(2)
6.1.2 Passive WDM,
256(1)
6.1.3 PONs and Optical Access Networks,
257(2)
6.1.4 WDM-PON,
259(14)
6.1.4.1 WDM-PON with Tunable Lasers and Laser Arrays,
261(5)
6.1.4.2 WDM-PON with Seeded Reflective Transmitters,
266(5)
6.1.4.3 Coherent UDWDM-PON,
271(2)
6.1.5 WDM-Based PON Reach Analysis,
273(3)
6.1.6 WDM-PON Deployment Reference: KT,
276(1)
6.2 Corporate Networks (Storage Reach Extensions),
277(10)
6.2.1 Disk Mirroring,
279(2)
6.2.2 Mainframe Coupling/Server Consolidation,
281(5)
6.2.3 Low-Latency WDM Transport,
286(1)
6.3 WDM Transport Encryption,
287(1)
6.4 Metro and Regional Networks,
288(6)
6.4.1 DWDM Metro/Regional Ring Networks,
288(3)
6.4.2 Capacity in WDM Ring Networks,
291(1)
6.4.3 Wavelength Blocking in WDM Rings,
292(2)
6.5 Long-Haul and Ultralong-Haul Systems,
294(19)
6.5.1 Optical Design Challenge,
294(1)
6.5.2 Engineering Models,
295(5)
6.5.2.1 Optical Signal-to-Noise Ratio Degradation,
296(1)
6.5.2.2 Spectral Ripple and Tilt,
296(1)
6.5.2.3 Self-Phase Modulation and Group Velocity Dispersion,
297(1)
6.5.2.4 Cross-Phase Modulation,
298(1)
6.5.2.5 Four-Wave Mixing,
299(1)
6.5.2.6 Stimulated Raman Scattering,
299(1)
6.5.3 Link-Based Design Approach,
300(2)
6.5.3.1 Optical Power Management,
300(1)
6.5.3.2 Chromatic Dispersion Management,
301(1)
6.5.4 Optical-Layer Design Workflow,
302(1)
6.5.5 Mixed 10 Gb/s/100 Gb/s Design,
303(3)
6.5.6 Regional Differences,
306(1)
6.5.7 Terrestrial Long-Haul Deployment Example: PIONIER,
307(2)
6.5.8 Submarine Systems,
309(3)
6.5.9 Ultralong-Haul Deployment Example: TAT-14,
312(1)
6.6 Future Network Configurations and Convergence,
313(8)
6.6.1 Delayering of Metro Networks,
314(1)
6.6.2 Energy Efficiency of WDM,
315(6)
References,
321(6)
7 WDM Network Management 327(22)
7.1 Layered Network,
327(2)
7.2 Management Approaches,
329(2)
7.3 Basic EMS, NMS, and OSS Functionality,
331(3)
7.4 Data Communications Network,
334(3)
7.5 Management System Interfaces,
337(2)
7.6 Control Plane,
339(9)
7.6.1 Control Plane Interfaces,
340(1)
7.6.2 Migration Scenarios,
341(1)
7.6.3 GMPLS Protocols,
342(2)
7.6.4 Control Plane Mechanisms,
344(5)
7.6.4.1 Automated Network Discovery,
344(1)
7.6.4.2 Path Computation,
345(1)
7.6.4.3 Connection Control,
345(2)
7.6.4.4 Resource Management,
347(1)
7.6.4.5 Entity Management,
347(1)
7.6.4.6 Call Control,
347(1)
References,
348(1)
8 Selected Network Issues 349(46)
8.1 Overview of the Optical Transport Network,
349(7)
8.1.1 OTN Layers,
349(2)
8.1.2 OTN Mapping and Multiplexing,
351(3)
8.1.3 OTN Operations, Administration, and Monitoring Aspects,
354(2)
8.2 Monitoring in WDM Systems,
356(19)
8.2.1 Impairments in Transparent Optical Networks,
356(1)
8.2.2 Measurements of the Quality of Optical Signals,
356(2)
8.2.3 Monitoring Techniques,
358(13)
8.2.3.1 Monitoring Requirements,
358(1)
8.2.3.2 CD Monitoring,
359(3)
8.2.3.3 PMD Monitoring,
362(2)
8.2.3.4 OSNR Monitoring,
364(5)
8.2.3.5 Optical Transient Monitoring (OTM),
369(2)
8.2.4 Optical Performance Monitoring,
371(2)
8.2.4.1 BER Monitoring,
371(1)
8.2.4.2 Q-Factor Monitoring,
372(1)
8.2.5 Fiber Monitoring,
373(2)
8.3 Flexible WDM Networks,
375(2)
8.4 Protection and Restoration,
377(12)
8.4.1 Dedicated Versus Shared Protection Versus Restoration,
377(1)
8.4.2 WDM Protection,
377(9)
8.4.3 WDM-PON Protection,
386(1)
8.4.4 Restoration,
387(2)
References,
389(6)
9 Standards Relevant for WDM 395(6)
9.1 ITU-T Recommendations,
395(1)
9.2 Others,
396(5)
9.2.1 FSAN (NG-PON2),
396(1)
9.2.2 OIF,
397(1)
9.2.3 IEEE-SA,
397(1)
9.2.4 IETF,
398(1)
9.2.5 IEC,
399(1)
9.2.6 Others (INCITS T.11 and IBTA),
399(2)
10 Practical Approximations and Tips 401(4)
10.1 Conversion Between Bit Error Rate and Equivalent Q-Factor
401(1)
10.2 Properties of a PRBS Signal,
402(1)
10.3 Chromatic Dispersion Values and Propagation Constants,
403(1)
References,
404(1)
Index 405
KLAUS GROBE, Dr.-Ing, is Principal Engineer at ADVA Optical Networking SE. He is a member of the German VDE ITG Photonic Networks working group, the IEEE Photonics Society, and the OFC 2010 Subcommittee on Transmission Subsystems and Network Elements.

MICHAEL EISELT, Dr.-Ing, is Director of Advanced Technology at ADVA Optical Networking SE. He was Principal Technical Staff Member at the Lightwave Networks Research Department of AT&T Labs and the Principal Architect at Celion Networks.