Preface to Second revised edition |
|
|
|
1 | (4) |
|
|
1 | (1) |
|
1.2 Where do we find plasma? |
|
|
1 | (1) |
|
1.3 Plasma physics - why bother? |
|
|
2 | (1) |
|
1.4 Why study waves in plasmas? |
|
|
3 | (2) |
|
|
3 | (1) |
|
1.4.2 Landau damping and instability |
|
|
4 | (1) |
|
1.4.3 Waves for diagnostics |
|
|
4 | (1) |
|
2 Basics of Continuum Models |
|
|
5 | (18) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (4) |
|
2.3.1 Gas pressure on a surface |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
17 | (3) |
|
2.6.1 An explicit calculation of the viscosity coefficient |
|
|
18 | (2) |
|
2.7 Thermal conductivity in gases |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (16) |
|
|
24 | (12) |
|
|
25 | (1) |
|
3.1.2 Characteristic velocities |
|
|
26 | (1) |
|
3.1.3 Evolution of modulated waves and wave-packets k |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.1.6 Method of stationary phase |
|
|
31 | (1) |
|
3.1.7 Absolute and convective instabilities |
|
|
32 | (2) |
|
|
34 | (2) |
|
3.2 Wave propagation in inhomogeneous media |
|
|
36 | (3) |
|
|
37 | (1) |
|
|
37 | (2) |
|
|
39 | (28) |
|
|
40 | (7) |
|
|
41 | (3) |
|
|
44 | (3) |
|
4.2 Weakly dispersive waves |
|
|
47 | (9) |
|
4.2.1 Korteweg-deVries equation |
|
|
47 | (6) |
|
4.2.2 Perturbations of a KdV equation |
|
|
53 | (2) |
|
4.2.3 Boussinesq equations |
|
|
55 | (1) |
|
4.2.4 Generalization to three dimensions |
|
|
56 | (1) |
|
4.3 Strongly dispersive waves |
|
|
56 | (11) |
|
|
56 | (2) |
|
4.3.2 Weakly nonlinear dispersive waves |
|
|
58 | (3) |
|
4.3.3 Modulational instability |
|
|
61 | (1) |
|
4.3.4 Soliton solutions of the NLS equation |
|
|
62 | (1) |
|
4.3.5 Derivation of the nonlinear Schrodinger equation |
|
|
63 | (2) |
|
4.3.6 Generalization to three spatial dimensions |
|
|
65 | (2) |
|
5 Basics of Electromagnetism |
|
|
67 | (36) |
|
5.1 Maxwell's equations in their basic form |
|
|
67 | (2) |
|
5.1.1 Boundary conditions |
|
|
68 | (1) |
|
5.1.2 Material relations for simple media |
|
|
69 | (1) |
|
5.2 Discussions of Maxwell's equations |
|
|
69 | (4) |
|
|
73 | (1) |
|
5.3.1 Differential equations for the potentials |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (3) |
|
5.4.1 Poynting's identity for a vacuum |
|
|
75 | (2) |
|
5.5 Electromagnetic forces |
|
|
77 | (3) |
|
5.5.1 Electromagnetic forces on particles and currents |
|
|
77 | (1) |
|
5.5.2 Electromagnetic forces on matter |
|
|
78 | (2) |
|
5.6 Waves in simple conducting media k |
|
|
80 | (2) |
|
5.7 Polarization description |
|
|
82 | (3) |
|
|
84 | (1) |
|
5.8 Lorentz transformations |
|
|
85 | (4) |
|
5.9 Dielectric properties |
|
|
89 | (5) |
|
|
89 | (1) |
|
|
90 | (2) |
|
5.9.3 Definition of the dielectric function |
|
|
92 | (2) |
|
5.10 Energy density in dielectrics |
|
|
94 | (5) |
|
|
94 | (1) |
|
5.10.2 Real dielectric functions -- dispersive media |
|
|
94 | (1) |
|
5.10.2.1 Electrostatic waves |
|
|
95 | (1) |
|
5.10.3 Inclusion of spatial dispersion |
|
|
96 | (1) |
|
5.10.4 Negative energy waves |
|
|
97 | (1) |
|
5.10.5 Complex dielectric functions -- dispersive media |
|
|
98 | (1) |
|
5.10.6 Damping by dielectric losses -- electrostatic waves k |
|
|
98 | (1) |
|
5.11 Force on a fluid or a gas |
|
|
99 | (4) |
|
6 Plasmas Found in Nature |
|
|
103 | (8) |
|
|
103 | (2) |
|
6.2 Coronal equilibrium k |
|
|
105 | (1) |
|
6.3 Chapman ionosphere k) |
|
|
106 | (5) |
|
|
111 | (26) |
|
7.1 Single particle orbits |
|
|
111 | (22) |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (3) |
|
7.1.4 Finite Larmor radius corrections for inhomogeneous electric fields |
|
|
117 | (2) |
|
7.1.5 Polarization drifts, dE/dt ≠ 0 |
|
|
119 | (1) |
|
|
120 | (4) |
|
|
124 | (2) |
|
|
126 | (5) |
|
7.1.9 Magnetic mirror confinement |
|
|
131 | (2) |
|
|
133 | (3) |
|
|
136 | (1) |
|
8 Basic Plasma Parameters |
|
|
137 | (26) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (5) |
|
|
138 | (1) |
|
8.3.1.1 Shielding in three spatial dimensions with spherical symmetry |
|
|
139 | (1) |
|
8.3.1.2 Shielding with cylindrical symmetry |
|
|
140 | (1) |
|
8.3.1.3 Shielding in one spatial dimension |
|
|
141 | (1) |
|
|
141 | (2) |
|
|
143 | (1) |
|
8.5 Evacuation of a Debye Sphere k |
|
|
144 | (1) |
|
|
145 | (1) |
|
8.7 Collisions between charged particles |
|
|
145 | (5) |
|
8.7.1 Simple arguments for collisional cross sections |
|
|
147 | (1) |
|
8.7.2 Center-of-mass dynamics |
|
|
148 | (2) |
|
8.8 Plasma resistivity by electron-ion collisions |
|
|
150 | (5) |
|
8.8.1 Charged particle collisions in magnetic fields |
|
|
154 | (1) |
|
8.9 Plasma resistivity by neutral collisions k |
|
|
155 | (4) |
|
8.9.1 Time-varying electric fields |
|
|
158 | (1) |
|
8.10 Plasma as a dielectric k |
|
|
159 | (4) |
|
8.10.1 Plasma as a dielectric at high frequencies |
|
|
160 | (1) |
|
8.10.2 A magnetized plasma as a dielectric at low frequencies |
|
|
161 | (2) |
|
|
163 | (22) |
|
|
163 | (6) |
|
|
164 | (2) |
|
|
166 | (2) |
|
|
168 | (1) |
|
9.2 Double plasma devices |
|
|
169 | (1) |
|
|
169 | (14) |
|
|
170 | (1) |
|
|
171 | (3) |
|
|
174 | (2) |
|
|
176 | (1) |
|
9.3.4 Orbit theory for thin cylindrical probes k |
|
|
176 | (4) |
|
9.3.5 The Bohm condition k |
|
|
180 | (3) |
|
|
183 | (2) |
|
9.4.1 Space charge limited currents k |
|
|
184 | (1) |
|
10 Magneto-Hydrodynamics by Brute Force |
|
|
185 | (40) |
|
10.1 Ideal magneto-hydrodynamics |
|
|
185 | (4) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (2) |
|
|
191 | (13) |
|
10.3.1 Frozen-in field lines |
|
|
192 | (3) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
10.3.4.4 Pinch instabilities |
|
|
199 | (2) |
|
10.3.4.5 Kink instability of a long thin pinch |
|
|
201 | (1) |
|
|
202 | (2) |
|
10.4 Applications of MHD to the Earth's magnetosphere |
|
|
204 | (10) |
|
|
204 | (4) |
|
10.4.2 The Earth's magnetosphere |
|
|
208 | (6) |
|
|
214 | (4) |
|
10.5.1 Alfven waves in incompressible plasmas |
|
|
214 | (4) |
|
10.5.2 Energy density of shear Alfven waves |
|
|
218 | (1) |
|
10.6 Compressional Alfven waves |
|
|
218 | (3) |
|
|
221 | (4) |
|
|
222 | (3) |
|
11 Plasma as a Mixture of Charged Gases |
|
|
225 | (14) |
|
11.1 Multi-component plasmas |
|
|
225 | (6) |
|
11.1.1 Plasma diamagnetism |
|
|
229 | (2) |
|
|
231 | (2) |
|
11.3 Collisional diffusion in two component, magnetized plasmas |
|
|
233 | (6) |
|
11.3.1 Diffusion in fully ionized plasmas k |
|
|
233 | (2) |
|
11.3.2 Diffusion in partially ionized plasmas k |
|
|
235 | (4) |
|
|
239 | (32) |
|
12.1 Waves in unmagnetized plasmas |
|
|
239 | (3) |
|
|
241 | (1) |
|
12.2 Waves in magnetized plasmas |
|
|
242 | (16) |
|
12.2.1 High frequency waves |
|
|
243 | (1) |
|
12.2.1.1 Longitudinal or electrostatic waves |
|
|
244 | (1) |
|
12.2.1.2 Transverse waves |
|
|
245 | (3) |
|
12.2.2 Wave propagation perpendicular to B0 |
|
|
248 | (2) |
|
12.2.3 Wave propagation parallel to B0 |
|
|
250 | (2) |
|
12.2.4 Wave propagation at an arbitrary angle to B0 |
|
|
252 | (2) |
|
12.2.4.1 Quasi-normal wave propagation |
|
|
254 | (1) |
|
12.2.4.2 Quasi-parallel wave propagation |
|
|
254 | (1) |
|
12.2.5 Wave propagation in stratified plasmas |
|
|
255 | (1) |
|
12.2.6 Electrostatic waves in a strongly magnetized waveguide |
|
|
256 | (2) |
|
|
258 | (2) |
|
12.4 Waves including the ion dynamics |
|
|
260 | (5) |
|
12.4.1 Lower-hybrid waves |
|
|
260 | (2) |
|
|
262 | (1) |
|
12.4.3 The Hall-MHD model |
|
|
263 | (1) |
|
|
264 | (1) |
|
12.5 Quasi-electrostatic approximation |
|
|
265 | (2) |
|
12.5.1 Upper-hybrid waves |
|
|
266 | (1) |
|
12.5.2 Lower-hybrid waves |
|
|
267 | (1) |
|
12.6 Quasi-transverse approximation |
|
|
267 | (1) |
|
|
268 | (2) |
|
12.7.1 Buneman instability k |
|
|
268 | (2) |
|
|
270 | (1) |
|
13 Electrostatic Waves in Warm Homogeneous and Isotropic Plasmas |
|
|
271 | (10) |
|
13.1 Electron plasma waves |
|
|
271 | (7) |
|
13.1.1 Radiation of Langmuir waves from a moving charge |
|
|
274 | (4) |
|
|
278 | (3) |
|
13.2.1 The quasi-neutral limit |
|
|
280 | (1) |
|
14 Fluid Models for Nonlinear Electrostatic Waves: Isotropic Case |
|
|
281 | (30) |
|
14.1 Weakly nonlinear Langmuir waves |
|
|
281 | (21) |
|
14.1.1 Cold electrons with immobile ions |
|
|
281 | (4) |
|
|
285 | (2) |
|
14.1.3 The ponderomotive force |
|
|
287 | (2) |
|
14.1.3.1 Experimental observations |
|
|
289 | (1) |
|
14.1.4 Nonlinear wave equations |
|
|
290 | (4) |
|
14.1.5 Langmuir wave decay |
|
|
294 | (3) |
|
14.1.6 The nonlinear Schrodinger equation |
|
|
297 | (1) |
|
14.1.7 Nonlinear plasma waves in one, two and three spatial dimensions |
|
|
298 | (2) |
|
|
300 | (2) |
|
14.2 Weakly nonlinear ion acoustic waves |
|
|
302 | (9) |
|
14.2.1 Simple ion acoustic waves |
|
|
302 | (1) |
|
14.2.2 The Korteweg-deVries model for ion acoustic waves |
|
|
303 | (3) |
|
14.2.3 Stationary nonlinear solutions |
|
|
306 | (2) |
|
14.2.4 Experimental results for soliton propagation |
|
|
308 | (3) |
|
15 Small Amplitude Waves in Anisotropic Warm Plasmas |
|
|
311 | (12) |
|
15.1 High frequency electrostatic electron waves |
|
|
311 | (3) |
|
15.1.1 Electrostatic waves in a strongly magnetized wave guide |
|
|
314 | (1) |
|
15.2 Low frequency electrostatic ion waves |
|
|
314 | (3) |
|
|
317 | (2) |
|
15.3.1 The quasi-neutral limit |
|
|
317 | (2) |
|
15.3.2 Deviations from quasi neutrality |
|
|
319 | (1) |
|
15.4 Alfven waves in warm plasmas |
|
|
319 | (2) |
|
15.5 Ion acoustic waves in gravitational atmospheres k |
|
|
321 | (2) |
|
16 Fluid Models for Nonlinear Electrostatic Waves: Magnetized Case |
|
|
323 | (8) |
|
16.1 Cold electrons with immobile ions |
|
|
323 | (1) |
|
|
324 | (3) |
|
16.3 Simplified special cases |
|
|
327 | (1) |
|
16.3.1 B-parallel propagation |
|
|
327 | (1) |
|
16.3.2 B-perpendicular propagation |
|
|
328 | (1) |
|
16.4 Models for the low frequency response |
|
|
328 | (3) |
|
16.4.1 Quasi static response |
|
|
328 | (1) |
|
16.4.2 Low frequencies, ω << ωci |
|
|
328 | (1) |
|
16.4.3 Ion cyclotron waves |
|
|
328 | (1) |
|
16.4.4 Lower-hybrid response |
|
|
329 | (2) |
|
|
331 | (40) |
|
|
331 | (4) |
|
17.1.1 A simple reference model k |
|
|
331 | (2) |
|
17.1.2 Physical description k |
|
|
333 | (1) |
|
17.1.3 Limitations of the electrostatic assumption |
|
|
334 | (1) |
|
17.1.4 Spatially varying magnetic fields |
|
|
335 | (1) |
|
17.2 Simplified linear theory with cold ions: the role of ion inertia |
|
|
335 | (5) |
|
17.2.1 Dispersion relation |
|
|
336 | (2) |
|
17.2.2 Physical description |
|
|
338 | (1) |
|
17.2.3 The electron velocity |
|
|
339 | (1) |
|
17.2.4 Divergence-free currents |
|
|
340 | (1) |
|
17.3 Drift wave instability |
|
|
340 | (1) |
|
17.4 Resistive drift waves with Ti = 0 |
|
|
341 | (2) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
343 | (8) |
|
17.5.1 Dispersion relation |
|
|
346 | (2) |
|
17.5.2 Amplitude and phase relations |
|
|
348 | (1) |
|
17.5.3 Physical description |
|
|
348 | (2) |
|
|
350 | (1) |
|
17.6 Resistive drift waves with Ti > 0 |
|
|
351 | (8) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (1) |
|
17.6.3.1 Comments on the cancellation of terms in the viscosity tensor |
|
|
354 | (1) |
|
17.6.4 Dispersion relation |
|
|
355 | (1) |
|
|
355 | (1) |
|
17.6.4.2 Resistive-g mode |
|
|
356 | (2) |
|
17.6.5 FLR stabilization of flute modes |
|
|
358 | (1) |
|
17.7 Drift waves with ion viscosity |
|
|
359 | (4) |
|
17.7.1 Dispersion relation |
|
|
360 | (1) |
|
|
360 | (1) |
|
17.7.3 Amplitude and phase relations |
|
|
361 | (1) |
|
|
362 | (1) |
|
17.7.4.1 Long-lambda;|| and short-lambda;|| stabilization points |
|
|
362 | (1) |
|
17.7.5 An apparent paradox |
|
|
362 | (1) |
|
17.8 Experimental observations of low frequency electrostatic drift waves |
|
|
363 | (2) |
|
17.9 Drift waves at larger frequencies |
|
|
365 | (1) |
|
17.10 Velocity shear driven instabilities |
|
|
366 | (5) |
|
17.10.1 Velocity shear instabilities: flute modes |
|
|
366 | (3) |
|
17.10.2 Velocity shear instabilities with electron shielding |
|
|
369 | (2) |
|
18 Weakly Nonlinear Electrostatic Drift Waves |
|
|
371 | (16) |
|
18.1 Hasegawa-Mima equation |
|
|
371 | (10) |
|
18.1.1 Linearized Hasegawa-Mima equation |
|
|
373 | (1) |
|
|
373 | (1) |
|
|
374 | (3) |
|
18.1.4 Coherent three wave interactions |
|
|
377 | (1) |
|
18.1.5 Stationary solutions Si |
|
|
378 | (3) |
|
18.2 Hasegawa-Wakatani equations |
|
|
381 | (6) |
|
18.2.1 Linearized Hasegawa-Wakatani equations |
|
|
383 | (1) |
|
18.2.2 Conservation laws for the Hasegawa-Wakatani equations |
|
|
383 | (2) |
|
18.2.3 Comments on the Hasegawa-Wakatani equations |
|
|
385 | (2) |
|
|
387 | (10) |
|
|
387 | (3) |
|
|
389 | (1) |
|
19.2 Relation between kinetic and fluid models |
|
|
390 | (4) |
|
|
394 | (1) |
|
19.4 Drift kinetic equation |
|
|
395 | (2) |
|
20 Kinetic Description of Electron Plasma Waves |
|
|
397 | (30) |
|
20.1 Linearized equations |
|
|
398 | (1) |
|
20.2 Kinetic dispersion relations |
|
|
399 | (17) |
|
20.2.1 Landau damping the easy way |
|
|
403 | (1) |
|
20.2.2 Physical arguments for Landau damping |
|
|
404 | (3) |
|
20.2.3 Landau damping the hard way |
|
|
407 | (1) |
|
20.2.3.1 Solution by Laplace transform |
|
|
407 | (6) |
|
20.2.4 Normal-mode solution |
|
|
413 | (3) |
|
20.3 The Penrose criterion for plasma stability |
|
|
416 | (5) |
|
20.3.1 Two counter streaming cold electron beams |
|
|
419 | (2) |
|
20.4 Small amplitude power theorem |
|
|
421 | (2) |
|
20.5 Experimental investigations |
|
|
423 | (4) |
|
21 Kinetic Plasma Sound Waves |
|
|
427 | (28) |
|
21.1 Kinetic dispersion relation for ion sound waves |
|
|
428 | (2) |
|
21.1.1 Unstable ion acoustic waves |
|
|
429 | (1) |
|
21.2 Basic nonlinear dynamic equation for low frequency kinetic plasma waves |
|
|
430 | (3) |
|
21.2.1 Energy conservation |
|
|
431 | (2) |
|
21.2.2 Energy density of an ion sound wave |
|
|
433 | (1) |
|
21.3 Sound radiation from a moving charge |
|
|
433 | (8) |
|
21.3.1 Calculations in one spatial dimension |
|
|
434 | (4) |
|
21.3.2 Calculations in three spatial dimensions |
|
|
438 | (2) |
|
21.3.2.1 Numerical results |
|
|
440 | (1) |
|
21.4 A boundary value problem for wave excitation |
|
|
441 | (2) |
|
21.5 A realizable initial value problem |
|
|
443 | (8) |
|
21.5.1 Introductory comments on self similar solutions |
|
|
444 | (1) |
|
21.5.2 Solution of a linearized initial value problem |
|
|
445 | (3) |
|
21.5.3 Experimental results |
|
|
448 | (3) |
|
21.6 Linearized model with ion-neutral collisions |
|
|
451 | (4) |
|
21.6.1 Analytical models for charge-exchange collisions |
|
|
451 | (3) |
|
21.6.2 Strongly collisional regime |
|
|
454 | (1) |
|
22 Nonlinear Kinetic Equilibria |
|
|
455 | (10) |
|
|
455 | (4) |
|
22.2 Experimental results |
|
|
459 | (6) |
|
|
461 | (1) |
|
22.2.2 Electrostatic double layers |
|
|
462 | (2) |
|
22.2.3 Mixed fluid-kinetic models |
|
|
464 | (1) |
|
23 Nonlinear Landau Damping |
|
|
465 | (10) |
|
23.1 Nonlinear Landau damping |
|
|
465 | (4) |
|
|
468 | (1) |
|
23.2 Damping of ion acoustic solitons by reflected particles |
|
|
469 | (5) |
|
23.3 Wave-particle interaction in one and in higher dimensions |
|
|
474 | (1) |
|
|
475 | (12) |
|
24.1 Conservation of energy and momentum |
|
|
479 | (1) |
|
24.2 Discussions of the asymptotic stage |
|
|
479 | (2) |
|
24.3 Experimental results |
|
|
481 | (6) |
|
|
487 | (4) |
|
|
490 | (1) |
|
B Collisional Cross Sections |
|
|
491 | (8) |
|
B.1 Cross sections in general |
|
|
491 | (3) |
|
|
494 | (1) |
|
B.3 A statistical model for collisions |
|
|
495 | (4) |
|
B.3.1 Analytical collision model |
|
|
497 | (1) |
|
|
498 | (1) |
|
C The Plasma Dispersion Function |
|
|
499 | (4) |
|
C.1 Approximations for the plasma dispersion function |
|
|
501 | (1) |
|
C.2 Non-Max wellian distributions |
|
|
502 | (1) |
|
D Mathematical Theorems and Useful Relations |
|
|
503 | (8) |
|
|
503 | (1) |
|
|
503 | (1) |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
504 | (1) |
|
D.6 The Jacobian determinant |
|
|
505 | (1) |
|
D.6.1 Cylindrical coordinates |
|
|
505 | (1) |
|
D.6.2 Spherical coordinates |
|
|
505 | (1) |
|
D.7 Useful Vector Relations |
|
|
505 | (1) |
|
D.7.1 Some basic vector relations |
|
|
505 | (1) |
|
D.8 Differential operators |
|
|
506 | (2) |
|
D.8.1 Some basic differential expressions |
|
|
506 | (1) |
|
D.8.2 Differential operators in spherical geometry |
|
|
506 | (1) |
|
D.8.3 Differential operators in cylindrical geometry |
|
|
507 | (1) |
|
|
508 | (3) |
|
|
508 | (1) |
|
D.9.2 Selected data of geophysical and astrophysical importance |
|
|
509 | (1) |
|
D.9.3 Approximate expressions |
|
|
510 | (1) |
Bibliography |
|
511 | (22) |
Index |
|
533 | |