Muutke küpsiste eelistusi

Waves and Oscillations in Plasmas 2nd edition [Pehme köide]

(Department of Physics, University of Oslo, Oslo, Norway)
  • Formaat: Paperback / softback, 554 pages, kõrgus x laius: 254x178 mm, kaal: 957 g, 168 Illustrations, black and white
  • Sari: Series in Plasma Physics
  • Ilmumisaeg: 13-Dec-2021
  • Kirjastus: CRC Press
  • ISBN-10: 1032236426
  • ISBN-13: 9781032236421
  • Formaat: Paperback / softback, 554 pages, kõrgus x laius: 254x178 mm, kaal: 957 g, 168 Illustrations, black and white
  • Sari: Series in Plasma Physics
  • Ilmumisaeg: 13-Dec-2021
  • Kirjastus: CRC Press
  • ISBN-10: 1032236426
  • ISBN-13: 9781032236421

Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America.


Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more.


Features:

  • Presents a simple physical interpretation of basic problems is presented where possible
  • Supplies a complete summary of classical papers and textbooks placed in the proper context
  • Includes worked examples, exercises, and problems with general applicability


  • This new edition has been fully updated to address the latest, central issues in modern plasma sciences, working from an introductory to advanced level.

    Preface to Second revised edition
    1 Introduction
    1(4)
    1.1 What is a plasma?
    1(1)
    1.2 Where do we find plasma?
    1(1)
    1.3 Plasma physics - why bother?
    2(1)
    1.4 Why study waves in plasmas?
    3(2)
    1.4.1 Alfven waves
    3(1)
    1.4.2 Landau damping and instability
    4(1)
    1.4.3 Waves for diagnostics
    4(1)
    2 Basics of Continuum Models
    5(18)
    2.1 Continuity equation
    6(1)
    2.2 Newton's second law
    7(2)
    2.3 Equation of state
    9(4)
    2.3.1 Gas pressure on a surface
    10(2)
    2.3.2 Heat capacities
    12(1)
    2.4 Dynamic properties
    13(1)
    2.4.1 Sound waves
    13(1)
    2.5 Incompressible media
    14(3)
    2.6 Molecular viscosity
    17(3)
    2.6.1 An explicit calculation of the viscosity coefficient
    18(2)
    2.7 Thermal conductivity in gases
    20(1)
    2.8 Diffusion in gases
    21(2)
    3 Linear Wave Dynamics
    23(16)
    3.1 Dispersion relations
    24(12)
    3.1.1 Complex notation
    25(1)
    3.1.2 Characteristic velocities
    26(1)
    3.1.3 Evolution of modulated waves and wave-packets k
    27(2)
    3.1.4 Doppler shifts
    29(1)
    3.1.5 Wave polarization
    30(1)
    3.1.6 Method of stationary phase
    31(1)
    3.1.7 Absolute and convective instabilities
    32(2)
    3.1.8 Pulse response
    34(2)
    3.2 Wave propagation in inhomogeneous media
    36(3)
    3.2.1 Snell's law
    37(1)
    3.2.2 WKB analysis
    37(2)
    4 Weakly Nonlinear Waves
    39(28)
    4.1 Nondispersive waves
    40(7)
    4.1.1 Simple waves
    41(3)
    4.1.2 Burgers' equation
    44(3)
    4.2 Weakly dispersive waves
    47(9)
    4.2.1 Korteweg-deVries equation
    47(6)
    4.2.2 Perturbations of a KdV equation
    53(2)
    4.2.3 Boussinesq equations
    55(1)
    4.2.4 Generalization to three dimensions
    56(1)
    4.3 Strongly dispersive waves
    56(11)
    4.3.1 Simple oscillators
    56(2)
    4.3.2 Weakly nonlinear dispersive waves
    58(3)
    4.3.3 Modulational instability
    61(1)
    4.3.4 Soliton solutions of the NLS equation
    62(1)
    4.3.5 Derivation of the nonlinear Schrodinger equation
    63(2)
    4.3.6 Generalization to three spatial dimensions
    65(2)
    5 Basics of Electromagnetism
    67(36)
    5.1 Maxwell's equations in their basic form
    67(2)
    5.1.1 Boundary conditions
    68(1)
    5.1.2 Material relations for simple media
    69(1)
    5.2 Discussions of Maxwell's equations
    69(4)
    5.3 Potentials
    73(1)
    5.3.1 Differential equations for the potentials
    73(1)
    5.3.2 The Hertz vectors
    74(1)
    5.4 Poynting's identity
    74(3)
    5.4.1 Poynting's identity for a vacuum
    75(2)
    5.5 Electromagnetic forces
    77(3)
    5.5.1 Electromagnetic forces on particles and currents
    77(1)
    5.5.2 Electromagnetic forces on matter
    78(2)
    5.6 Waves in simple conducting media k
    80(2)
    5.7 Polarization description
    82(3)
    5.7.1 Method of images
    84(1)
    5.8 Lorentz transformations
    85(4)
    5.9 Dielectric properties
    89(5)
    5.9.1 Simple media
    89(1)
    5.9.2 Material relations
    90(2)
    5.9.3 Definition of the dielectric function
    92(2)
    5.10 Energy density in dielectrics
    94(5)
    5.10.1 Simple media
    94(1)
    5.10.2 Real dielectric functions -- dispersive media
    94(1)
    5.10.2.1 Electrostatic waves
    95(1)
    5.10.3 Inclusion of spatial dispersion
    96(1)
    5.10.4 Negative energy waves
    97(1)
    5.10.5 Complex dielectric functions -- dispersive media
    98(1)
    5.10.6 Damping by dielectric losses -- electrostatic waves k
    98(1)
    5.11 Force on a fluid or a gas
    99(4)
    6 Plasmas Found in Nature
    103(8)
    6.1 Saha's equation
    103(2)
    6.2 Coronal equilibrium k
    105(1)
    6.3 Chapman ionosphere k)
    106(5)
    7 Single Particle Motion
    111(26)
    7.1 Single particle orbits
    111(22)
    7.1.1 E || B
    111(2)
    7.1.2 E T B
    113(1)
    7.1.3 Fc T B
    114(3)
    7.1.4 Finite Larmor radius corrections for inhomogeneous electric fields
    117(2)
    7.1.5 Polarization drifts, dE/dt ≠ 0
    119(1)
    7.1.6 ΔB T B
    120(4)
    7.1.7 ΔB || B
    124(2)
    7.1.8 Magnetic moment
    126(5)
    7.1.9 Magnetic mirror confinement
    131(2)
    7.2 Adiabatic invariants
    133(3)
    7.3 Radiation losses
    136(1)
    8 Basic Plasma Parameters
    137(26)
    8.1 Plasma frequencies
    137(1)
    8.2 The Debye length
    138(1)
    8.3 Debye shielding
    138(5)
    8.3.1 Immobile ions
    138(1)
    8.3.1.1 Shielding in three spatial dimensions with spherical symmetry
    139(1)
    8.3.1.2 Shielding with cylindrical symmetry
    140(1)
    8.3.1.3 Shielding in one spatial dimension
    141(1)
    8.3.2 Mobile ions
    141(2)
    8.4 Interaction energy k
    143(1)
    8.5 Evacuation of a Debye Sphere k
    144(1)
    8.6 The plasma parameter
    145(1)
    8.7 Collisions between charged particles
    145(5)
    8.7.1 Simple arguments for collisional cross sections
    147(1)
    8.7.2 Center-of-mass dynamics
    148(2)
    8.8 Plasma resistivity by electron-ion collisions
    150(5)
    8.8.1 Charged particle collisions in magnetic fields
    154(1)
    8.9 Plasma resistivity by neutral collisions k
    155(4)
    8.9.1 Time-varying electric fields
    158(1)
    8.10 Plasma as a dielectric k
    159(4)
    8.10.1 Plasma as a dielectric at high frequencies
    160(1)
    8.10.2 A magnetized plasma as a dielectric at low frequencies
    161(2)
    9 Experimental Devices
    163(22)
    9.1 The Q-machine k
    163(6)
    9.1.1 Electron emission
    164(2)
    9.1.2 Ion emission
    166(2)
    9.1.3 Discussion
    168(1)
    9.2 Double plasma devices
    169(1)
    9.3 Langmuir probes
    169(14)
    9.3.1 A simple example
    170(1)
    9.3.2 Plane probes k
    171(3)
    9.3.3 Double probes k
    174(2)
    9.3.3.1 Plasma sheaths
    176(1)
    9.3.4 Orbit theory for thin cylindrical probes k
    176(4)
    9.3.5 The Bohm condition k
    180(3)
    9.4 Ion energy analyzers
    183(2)
    9.4.1 Space charge limited currents k
    184(1)
    10 Magneto-Hydrodynamics by Brute Force
    185(40)
    10.1 Ideal magneto-hydrodynamics
    185(4)
    10.1.1 Faraday's law
    186(1)
    10.1.2 Ampere's law
    186(1)
    10.1.3 Ohm's law
    187(1)
    10.1.4 Equation of state
    188(1)
    10.2 Compressible MHD
    189(2)
    10.3 Dissipative MHD
    191(13)
    10.3.1 Frozen-in field lines
    192(3)
    10.3.2 Magnetic pressure
    195(2)
    10.3.3 Plasma β
    197(1)
    10.3.4 Plasma pinches
    197(1)
    10.3.4.1 θ-Pinch
    198(1)
    10.3.4.2 Z-Pinch
    198(1)
    10.3.4.3 Screw-pinch
    199(1)
    10.3.4.4 Pinch instabilities
    199(2)
    10.3.4.5 Kink instability of a long thin pinch
    201(1)
    10.3.5 Virial theorem k
    202(2)
    10.4 Applications of MHD to the Earth's magnetosphere
    204(10)
    10.4.1 The solar wind k
    204(4)
    10.4.2 The Earth's magnetosphere
    208(6)
    10.5 Alfven waves
    214(4)
    10.5.1 Alfven waves in incompressible plasmas
    214(4)
    10.5.2 Energy density of shear Alfven waves
    218(1)
    10.6 Compressional Alfven waves
    218(3)
    10.7 Ideal electron MHD
    221(4)
    10.7.1 Whistlers k
    222(3)
    11 Plasma as a Mixture of Charged Gases
    225(14)
    11.1 Multi-component plasmas
    225(6)
    11.1.1 Plasma diamagnetism
    229(2)
    11.2 Quasi-neutrality
    231(2)
    11.3 Collisional diffusion in two component, magnetized plasmas
    233(6)
    11.3.1 Diffusion in fully ionized plasmas k
    233(2)
    11.3.2 Diffusion in partially ionized plasmas k
    235(4)
    12 Waves in Cold Plasmas
    239(32)
    12.1 Waves in unmagnetized plasmas
    239(3)
    12.1.1 Penetration depth
    241(1)
    12.2 Waves in magnetized plasmas
    242(16)
    12.2.1 High frequency waves
    243(1)
    12.2.1.1 Longitudinal or electrostatic waves
    244(1)
    12.2.1.2 Transverse waves
    245(3)
    12.2.2 Wave propagation perpendicular to B0
    248(2)
    12.2.3 Wave propagation parallel to B0
    250(2)
    12.2.4 Wave propagation at an arbitrary angle to B0
    252(2)
    12.2.4.1 Quasi-normal wave propagation
    254(1)
    12.2.4.2 Quasi-parallel wave propagation
    254(1)
    12.2.5 Wave propagation in stratified plasmas
    255(1)
    12.2.6 Electrostatic waves in a strongly magnetized waveguide
    256(2)
    12.3 Collisional losses
    258(2)
    12.4 Waves including the ion dynamics
    260(5)
    12.4.1 Lower-hybrid waves
    260(2)
    12.4.2 Alfven waves
    262(1)
    12.4.3 The Hall-MHD model
    263(1)
    12.4.4 Multi ion species
    264(1)
    12.5 Quasi-electrostatic approximation
    265(2)
    12.5.1 Upper-hybrid waves
    266(1)
    12.5.2 Lower-hybrid waves
    267(1)
    12.6 Quasi-transverse approximation
    267(1)
    12.7 Instabilities
    268(2)
    12.7.1 Buneman instability k
    268(2)
    12.8 Conclusions
    270(1)
    13 Electrostatic Waves in Warm Homogeneous and Isotropic Plasmas
    271(10)
    13.1 Electron plasma waves
    271(7)
    13.1.1 Radiation of Langmuir waves from a moving charge
    274(4)
    13.2 Ion acoustic waves
    278(3)
    13.2.1 The quasi-neutral limit
    280(1)
    14 Fluid Models for Nonlinear Electrostatic Waves: Isotropic Case
    281(30)
    14.1 Weakly nonlinear Langmuir waves
    281(21)
    14.1.1 Cold electrons with immobile ions
    281(4)
    14.1.2 Mobile ions
    285(2)
    14.1.3 The ponderomotive force
    287(2)
    14.1.3.1 Experimental observations
    289(1)
    14.1.4 Nonlinear wave equations
    290(4)
    14.1.5 Langmuir wave decay
    294(3)
    14.1.6 The nonlinear Schrodinger equation
    297(1)
    14.1.7 Nonlinear plasma waves in one, two and three spatial dimensions
    298(2)
    14.1.8 Wave decay
    300(2)
    14.2 Weakly nonlinear ion acoustic waves
    302(9)
    14.2.1 Simple ion acoustic waves
    302(1)
    14.2.2 The Korteweg-deVries model for ion acoustic waves
    303(3)
    14.2.3 Stationary nonlinear solutions
    306(2)
    14.2.4 Experimental results for soliton propagation
    308(3)
    15 Small Amplitude Waves in Anisotropic Warm Plasmas
    311(12)
    15.1 High frequency electrostatic electron waves
    311(3)
    15.1.1 Electrostatic waves in a strongly magnetized wave guide
    314(1)
    15.2 Low frequency electrostatic ion waves
    314(3)
    15.3 Lower-hybrid waves
    317(2)
    15.3.1 The quasi-neutral limit
    317(2)
    15.3.2 Deviations from quasi neutrality
    319(1)
    15.4 Alfven waves in warm plasmas
    319(2)
    15.5 Ion acoustic waves in gravitational atmospheres k
    321(2)
    16 Fluid Models for Nonlinear Electrostatic Waves: Magnetized Case
    323(8)
    16.1 Cold electrons with immobile ions
    323(1)
    16.2 Mobile ions
    324(3)
    16.3 Simplified special cases
    327(1)
    16.3.1 B-parallel propagation
    327(1)
    16.3.2 B-perpendicular propagation
    328(1)
    16.4 Models for the low frequency response
    328(3)
    16.4.1 Quasi static response
    328(1)
    16.4.2 Low frequencies, ω << ωci
    328(1)
    16.4.3 Ion cyclotron waves
    328(1)
    16.4.4 Lower-hybrid response
    329(2)
    17 Linear Drift Waves
    331(40)
    17.1 Drift wave basics
    331(4)
    17.1.1 A simple reference model k
    331(2)
    17.1.2 Physical description k
    333(1)
    17.1.3 Limitations of the electrostatic assumption
    334(1)
    17.1.4 Spatially varying magnetic fields
    335(1)
    17.2 Simplified linear theory with cold ions: the role of ion inertia
    335(5)
    17.2.1 Dispersion relation
    336(2)
    17.2.2 Physical description
    338(1)
    17.2.3 The electron velocity
    339(1)
    17.2.4 Divergence-free currents
    340(1)
    17.3 Drift wave instability
    340(1)
    17.4 Resistive drift waves with Ti = 0
    341(2)
    17.4.1 Basic assumptions
    341(1)
    17.4.2 Basic equations
    342(1)
    17.4.3 Equilibrium
    343(1)
    17.5 Perturbation
    343(8)
    17.5.1 Dispersion relation
    346(2)
    17.5.2 Amplitude and phase relations
    348(1)
    17.5.3 Physical description
    348(2)
    17.5.4 Model consistency
    350(1)
    17.6 Resistive drift waves with Ti > 0
    351(8)
    17.6.1 Basic equations
    351(1)
    17.6.2 Equilibrium
    352(1)
    17.6.3 Perturbation
    353(1)
    17.6.3.1 Comments on the cancellation of terms in the viscosity tensor
    354(1)
    17.6.4 Dispersion relation
    355(1)
    17.6.4.1 Pure drift wave
    355(1)
    17.6.4.2 Resistive-g mode
    356(2)
    17.6.5 FLR stabilization of flute modes
    358(1)
    17.7 Drift waves with ion viscosity
    359(4)
    17.7.1 Dispersion relation
    360(1)
    17.7.2 Long-λ|| limit
    360(1)
    17.7.3 Amplitude and phase relations
    361(1)
    17.7.4 Shorten limit
    362(1)
    17.7.4.1 Long-lambda;|| and short-lambda;|| stabilization points
    362(1)
    17.7.5 An apparent paradox
    362(1)
    17.8 Experimental observations of low frequency electrostatic drift waves
    363(2)
    17.9 Drift waves at larger frequencies
    365(1)
    17.10 Velocity shear driven instabilities
    366(5)
    17.10.1 Velocity shear instabilities: flute modes
    366(3)
    17.10.2 Velocity shear instabilities with electron shielding
    369(2)
    18 Weakly Nonlinear Electrostatic Drift Waves
    371(16)
    18.1 Hasegawa-Mima equation
    371(10)
    18.1.1 Linearized Hasegawa-Mima equation
    373(1)
    18.1.2 Conservation laws
    373(1)
    18.1.3 Wave interactions
    374(3)
    18.1.4 Coherent three wave interactions
    377(1)
    18.1.5 Stationary solutions Si
    378(3)
    18.2 Hasegawa-Wakatani equations
    381(6)
    18.2.1 Linearized Hasegawa-Wakatani equations
    383(1)
    18.2.2 Conservation laws for the Hasegawa-Wakatani equations
    383(2)
    18.2.3 Comments on the Hasegawa-Wakatani equations
    385(2)
    19 Kinetic Plasma Theory
    387(10)
    19.1 The Vlasov equation
    387(3)
    19.1.1 Collisions
    389(1)
    19.2 Relation between kinetic and fluid models
    390(4)
    19.3 Water-bag models
    394(1)
    19.4 Drift kinetic equation
    395(2)
    20 Kinetic Description of Electron Plasma Waves
    397(30)
    20.1 Linearized equations
    398(1)
    20.2 Kinetic dispersion relations
    399(17)
    20.2.1 Landau damping the easy way
    403(1)
    20.2.2 Physical arguments for Landau damping
    404(3)
    20.2.3 Landau damping the hard way
    407(1)
    20.2.3.1 Solution by Laplace transform
    407(6)
    20.2.4 Normal-mode solution
    413(3)
    20.3 The Penrose criterion for plasma stability
    416(5)
    20.3.1 Two counter streaming cold electron beams
    419(2)
    20.4 Small amplitude power theorem
    421(2)
    20.5 Experimental investigations
    423(4)
    21 Kinetic Plasma Sound Waves
    427(28)
    21.1 Kinetic dispersion relation for ion sound waves
    428(2)
    21.1.1 Unstable ion acoustic waves
    429(1)
    21.2 Basic nonlinear dynamic equation for low frequency kinetic plasma waves
    430(3)
    21.2.1 Energy conservation
    431(2)
    21.2.2 Energy density of an ion sound wave
    433(1)
    21.3 Sound radiation from a moving charge
    433(8)
    21.3.1 Calculations in one spatial dimension
    434(4)
    21.3.2 Calculations in three spatial dimensions
    438(2)
    21.3.2.1 Numerical results
    440(1)
    21.4 A boundary value problem for wave excitation
    441(2)
    21.5 A realizable initial value problem
    443(8)
    21.5.1 Introductory comments on self similar solutions
    444(1)
    21.5.2 Solution of a linearized initial value problem
    445(3)
    21.5.3 Experimental results
    448(3)
    21.6 Linearized model with ion-neutral collisions
    451(4)
    21.6.1 Analytical models for charge-exchange collisions
    451(3)
    21.6.2 Strongly collisional regime
    454(1)
    22 Nonlinear Kinetic Equilibria
    455(10)
    22.1 Equilibria
    455(4)
    22.2 Experimental results
    459(6)
    22.2.1 Ion equilibria
    461(1)
    22.2.2 Electrostatic double layers
    462(2)
    22.2.3 Mixed fluid-kinetic models
    464(1)
    23 Nonlinear Landau Damping
    465(10)
    23.1 Nonlinear Landau damping
    465(4)
    23.1.1 Fluid limit
    468(1)
    23.2 Damping of ion acoustic solitons by reflected particles
    469(5)
    23.3 Wave-particle interaction in one and in higher dimensions
    474(1)
    24 Quasi-linear Theory
    475(12)
    24.1 Conservation of energy and momentum
    479(1)
    24.2 Discussions of the asymptotic stage
    479(2)
    24.3 Experimental results
    481(6)
    A Dimensional Analysis
    487(4)
    A.1 Summation convention
    490(1)
    B Collisional Cross Sections
    491(8)
    B.1 Cross sections in general
    491(3)
    B.2 Mean free paths
    494(1)
    B.3 A statistical model for collisions
    495(4)
    B.3.1 Analytical collision model
    497(1)
    B.3.2 Ohm's law
    498(1)
    C The Plasma Dispersion Function
    499(4)
    C.1 Approximations for the plasma dispersion function
    501(1)
    C.2 Non-Max wellian distributions
    502(1)
    D Mathematical Theorems and Useful Relations
    503(8)
    D.1 Gauss' theorem
    503(1)
    D.2 Stokes' theorem
    503(1)
    D.3 Green's relations
    503(1)
    D.4 Solenoidal fields
    504(1)
    D.5 Summary
    504(1)
    D.6 The Jacobian determinant
    505(1)
    D.6.1 Cylindrical coordinates
    505(1)
    D.6.2 Spherical coordinates
    505(1)
    D.7 Useful Vector Relations
    505(1)
    D.7.1 Some basic vector relations
    505(1)
    D.8 Differential operators
    506(2)
    D.8.1 Some basic differential expressions
    506(1)
    D.8.2 Differential operators in spherical geometry
    506(1)
    D.8.3 Differential operators in cylindrical geometry
    507(1)
    D.9 Numbers to Remember
    508(3)
    D.9.1 Physical constants
    508(1)
    D.9.2 Selected data of geophysical and astrophysical importance
    509(1)
    D.9.3 Approximate expressions
    510(1)
    Bibliography 511(22)
    Index 533
    Hans Pécseli is professor emeritus at the plasma-space physics department at the University of Oslo, and also adjoined professor at the University of Tromsø, Norway. He has contributed to the literature on plasma physics, meteorology, and lately also marine biology. He is member of the Royal Danish Academy of Sciences, the Norwegian Academy of Sciences and Letters, and also fellow of the American Physical Society. With a basic education in electrical engineering from the Technical University of Denmark and a PhD from the Risø National Laboratory in Denmark, Professor Pécseli has a background from laboratory experiments in plasma physics, working at the same time also with theoretical problems in this field.