Preface |
|
|
|
1 | (4) |
|
|
1 | (1) |
|
1.2 Where do we find plasma? |
|
|
1 | (1) |
|
1.3 Plasma physics - why bother? |
|
|
2 | (1) |
|
1.4 Why study waves in plasmas? |
|
|
3 | (2) |
|
|
3 | (1) |
|
1.4.2 Landau damping and instability |
|
|
4 | (1) |
|
2 Basics of Continuum Models |
|
|
5 | (24) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (4) |
|
2.3.1 Gas pressure on a surface |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
13 | (2) |
|
|
15 | (2) |
|
|
17 | (4) |
|
2.6.1 An explicit calculation of the viscosity coefficient |
|
|
18 | (3) |
|
2.7 Thermal conductivity in gases |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (4) |
|
2.10 Summation convention |
|
|
26 | (3) |
|
|
29 | (16) |
|
|
30 | (12) |
|
|
31 | (1) |
|
3.1.2 Characteristic velocities |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (2) |
|
3.1.5 Method of stationary phase |
|
|
36 | (1) |
|
3.1.6 Absolute and convective instabilities |
|
|
37 | (1) |
|
|
38 | (4) |
|
3.2 Wave propagation in inhomogeneous media |
|
|
42 | (3) |
|
|
42 | (1) |
|
|
42 | (3) |
|
|
45 | (28) |
|
|
46 | (7) |
|
|
47 | (3) |
|
|
50 | (3) |
|
4.2 Weakly dispersive waves |
|
|
53 | (9) |
|
4.2.1 Korteweg-de Vries equation |
|
|
53 | (5) |
|
4.2.2 Perturbations of a KdV equation |
|
|
58 | (3) |
|
4.2.3 Boussinesq equations |
|
|
61 | (1) |
|
4.2.4 Generalization to three dimensions |
|
|
61 | (1) |
|
4.3 Strongly dispersive waves |
|
|
62 | (11) |
|
|
62 | (2) |
|
4.3.2 Weakly nonlinear dispersive waves |
|
|
64 | (3) |
|
4.3.3 Modulational instability |
|
|
67 | (1) |
|
4.3.4 Soliton solutions of the NLS equation |
|
|
68 | (1) |
|
4.3.5 Derivation of the nonlinear Schrodinger equation |
|
|
69 | (2) |
|
4.3.6 Generalization to three spatial dimensions |
|
|
71 | (2) |
|
5 Basics of Electromagnetism |
|
|
73 | (36) |
|
5.1 Maxwell's equations in their basic form |
|
|
73 | (2) |
|
5.1.1 Boundary conditions |
|
|
74 | (1) |
|
5.1.2 Material relations for simple media |
|
|
75 | (1) |
|
5.2 Discussions of Maxwell's equations |
|
|
75 | (4) |
|
|
79 | (1) |
|
|
79 | (3) |
|
5.4.1 Poynting's identity for a vacuum |
|
|
80 | (2) |
|
5.5 Electromagnetic forces |
|
|
82 | (3) |
|
5.5.1 Electromagnetic forces on particles and currents |
|
|
82 | (1) |
|
5.5.2 Electromagnetic forces on matter |
|
|
83 | (2) |
|
5.6 Waves in simple conducting media (K) |
|
|
85 | (2) |
|
5.7 Polarization description |
|
|
87 | (3) |
|
|
89 | (1) |
|
5.8 Lorentz transformations |
|
|
90 | (4) |
|
5.9 Dielectric properties |
|
|
94 | (4) |
|
|
94 | (1) |
|
|
95 | (2) |
|
5.9.3 Definition of the dielectric function |
|
|
97 | (1) |
|
5.10 Energy density in dielectrics |
|
|
98 | (6) |
|
|
98 | (1) |
|
5.10.2 Real dielectric functions---dispersive media |
|
|
99 | (1) |
|
5.10.2.1 Electrostatic waves |
|
|
100 | (1) |
|
5.10.3 Inclusion of spatial dispersion |
|
|
101 | (1) |
|
5.10.4 Negative energy waves |
|
|
102 | (1) |
|
5.10.5 Complex dielectric functions---dispersive media |
|
|
102 | (1) |
|
5.10.6 Damping by dielectric losses---electrostatic waves |
|
|
103 | (1) |
|
5.11 Force on a fluid or a gas |
|
|
104 | (5) |
|
6 Natural Occurrences of Plasmas |
|
|
109 | (10) |
|
|
109 | (2) |
|
6.2 Coronal equilibrium (K) |
|
|
111 | (2) |
|
6.3 Chapman ionosphere (K) |
|
|
113 | (6) |
|
|
119 | (30) |
|
7.1 Single particle orbits |
|
|
119 | (22) |
|
|
119 | (2) |
|
|
121 | (1) |
|
|
122 | (3) |
|
7.1.4 Finite Larmor radius corrections for inhomogeneous electric fields |
|
|
125 | (2) |
|
7.1.5 Polarization drifts, dE/dt ≠ 0 |
|
|
127 | (1) |
|
|
128 | (4) |
|
|
132 | (1) |
|
|
133 | (4) |
|
7.1.9 Magnetic mirror confinement |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (2) |
|
7.4 The Dessler-Parker relations (K) |
|
|
145 | (4) |
|
8 Basic Plasma Parameters |
|
|
149 | (32) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (5) |
|
|
151 | (1) |
|
8.4.1.1 Shielding in three spatial dimensions |
|
|
152 | (1) |
|
8.4.1.2 Shielding in two spatial dimensions |
|
|
153 | (1) |
|
8.4.1.3 Shielding in one spatial dimension |
|
|
153 | (1) |
|
|
154 | (1) |
|
8.4.3 Nonlinear Debye shielding in one spatial dimension (K) |
|
|
155 | (1) |
|
8.5 Interaction energy (K) |
|
|
156 | (2) |
|
8.6 Evacuation of a Debye Sphere (K) |
|
|
158 | (1) |
|
8.7 Collisions between charged particles |
|
|
158 | (5) |
|
8.7.1 Simple arguments for collisional cross sections |
|
|
160 | (1) |
|
8.7.2 Center-of-mass dynamics |
|
|
161 | (2) |
|
8.8 Plasma resistivity by electron-ion collisions |
|
|
163 | (9) |
|
8.8.1 Collisions in magnetic fields |
|
|
167 | (1) |
|
8.8.2 Collisions in electric and magnetic fields |
|
|
168 | (1) |
|
8.8.2.1 The approximation E(y) |
|
|
169 | (1) |
|
8.8.2.2 The approximation E(y) |
|
|
170 | (2) |
|
8.9 Plasma resistivity by neutral collisions (K) |
|
|
172 | (4) |
|
8.9.1 Time-varying electric fields |
|
|
175 | (1) |
|
8.10 Plasma as a dielectric (K) |
|
|
176 | (5) |
|
8.10.1 Plasma as a dielectric at high frequencies |
|
|
177 | (1) |
|
8.10.2 A magnetized plasma as a dielectric at low frequencies |
|
|
177 | (4) |
|
|
181 | (24) |
|
|
181 | (6) |
|
|
182 | (2) |
|
|
184 | (2) |
|
|
186 | (1) |
|
9.2 Double plasma devices |
|
|
187 | (1) |
|
|
188 | (13) |
|
|
188 | (1) |
|
|
189 | (4) |
|
|
193 | (1) |
|
|
194 | (1) |
|
9.3.4 Orbit theory for thin cylindrical probes (K) |
|
|
195 | (3) |
|
9.3.5 The Bohm condition (K) |
|
|
198 | (3) |
|
|
201 | (4) |
|
9.4.1 Space charge limited currents (K) |
|
|
202 | (3) |
|
10 Magneto-Hydrodynamics by Brute Force |
|
|
205 | (40) |
|
10.1 Ideal magneto-hydrodynamics |
|
|
205 | (4) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (8) |
|
10.2.1 Virial theorem (K) |
|
|
211 | (1) |
|
10.2.2 Frozen-in field lines |
|
|
212 | (4) |
|
10.2.2.1 Other arguments for frozen-in field lines |
|
|
216 | (1) |
|
|
217 | (7) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
10.3.3.4 Pinch instabilities |
|
|
221 | (1) |
|
10.3.3.5 Kink stability of a long thin pinch |
|
|
222 | (1) |
|
|
223 | (1) |
|
10.4 Applications of MHD to the Earth's magnetosphere |
|
|
224 | (9) |
|
10.4.1 The solar wind (K) |
|
|
224 | (3) |
|
10.4.2 The Earth's magnetosphere |
|
|
227 | (6) |
|
|
233 | (4) |
|
10.5.1 Alfven waves in incompressible plasmas |
|
|
233 | (3) |
|
10.5.2 Energy density of shear Alfven waves |
|
|
236 | (1) |
|
10.6 Compressional Alfven waves |
|
|
237 | (3) |
|
|
240 | (5) |
|
|
241 | (4) |
|
11 Plasma as a Mixture of Charged Gases |
|
|
245 | (14) |
|
11.1 Multi-component plasmas |
|
|
245 | (6) |
|
11.1.1 Plasma diamagnetism |
|
|
249 | (2) |
|
|
251 | (1) |
|
11.3 Collisional diffusion in two component, magnetized plasmas |
|
|
252 | (7) |
|
11.3.1 Diffusion in fully ionized plasmas (K) |
|
|
253 | (2) |
|
11.3.2 Diffusion in partially ionized plasmas (K) |
|
|
255 | (4) |
|
|
259 | (30) |
|
12.1 Unmagnetized plasmas |
|
|
259 | (3) |
|
|
260 | (2) |
|
|
262 | (17) |
|
12.2.1 High frequency waves |
|
|
263 | (1) |
|
12.2.1.1 Longitudinal waves |
|
|
264 | (1) |
|
12.2.1.2 Transverse waves |
|
|
265 | (2) |
|
12.2.2 Wave propagation perpendicular to B0 |
|
|
267 | (1) |
|
12.2.3 Wave propagation parallel to B0 |
|
|
268 | (2) |
|
12.2.4 Wave propagation at an arbitrary angle to B0 |
|
|
270 | (1) |
|
12.2.4.1 Quasi-normal wave propagation |
|
|
271 | (1) |
|
12.2.4.2 Quasi-parallel wave propagation |
|
|
272 | (1) |
|
12.2.5 Quasi-electrostatic approximation |
|
|
273 | (1) |
|
12.2.5.1 Upper-hybrid waves |
|
|
274 | (1) |
|
12.2.5.2 Lower-hybrid waves |
|
|
274 | (1) |
|
12.2.6 Quasi-transverse approximation |
|
|
275 | (1) |
|
12.2.7 Wave propagation in stratified plasmas |
|
|
275 | (2) |
|
12.2.8 Electrostatic waves in a strongly magnetized waveguide |
|
|
277 | (2) |
|
|
279 | (2) |
|
12.4 Waves including the ion dynamics |
|
|
281 | (4) |
|
12.4.1 Lower-hybrid waves |
|
|
281 | (1) |
|
|
282 | (1) |
|
12.4.3 The Hall-MHD model |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (2) |
|
12.5.1 Buneman instability (K) |
|
|
286 | (1) |
|
|
287 | (2) |
|
13 Electrostatic Waves in Warm Homogeneous and Isotropic Plasmas |
|
|
289 | (10) |
|
13.1 Electron plasma waves |
|
|
289 | (7) |
|
13.1.1 Radiation of Langmuir waves from a moving charge |
|
|
291 | (5) |
|
|
296 | (3) |
|
13.2.1 The quasi-neutral limit |
|
|
298 | (1) |
|
14 Fluid Models for Nonlinear Electrostatic Waves: Isotropic Case |
|
|
299 | (26) |
|
14.1 Weakly nonlinear Langmuir waves |
|
|
299 | (19) |
|
14.1.1 Cold electrons with immobile ions |
|
|
299 | (4) |
|
|
303 | (2) |
|
14.1.3 The ponderomotive force |
|
|
305 | (1) |
|
14.1.3.1 Experimental observations |
|
|
306 | (1) |
|
14.1.4 Nonlinear wave equations |
|
|
307 | (4) |
|
14.1.5 Langmuir wave decay |
|
|
311 | (4) |
|
14.1.6 The nonlinear Schrodinger equation |
|
|
315 | (1) |
|
14.1.7 Nonlinear plasma waves in one, two and three spatial dimensions |
|
|
315 | (3) |
|
14.2 Weakly nonlinear ion acoustic waves |
|
|
318 | (7) |
|
14.2.1 Simple ion acoustic waves |
|
|
318 | (1) |
|
14.2.2 Korteweg-deVries model for ion acoustic waves |
|
|
319 | (3) |
|
14.2.3 Stationary nonlinear solutions |
|
|
322 | (3) |
|
15 Small Amplitude Waves in Anisotropic Warm Plasmas |
|
|
325 | (10) |
|
15.1 Warm magnetized plasmas |
|
|
325 | (6) |
|
15.1.1 High frequency electrostatic electron waves |
|
|
325 | (3) |
|
15.1.2 Electrostatic waves in a strongly magnetized waveguide |
|
|
328 | (1) |
|
15.1.3 Low frequency electrostatic ion waves |
|
|
328 | (3) |
|
15.1.4 Lower-hybrid waves |
|
|
331 | (1) |
|
15.2 Alfven waves in warm plasmas |
|
|
331 | (2) |
|
15.3 Ion acoustic waves in gravitational atmospheres (k) |
|
|
333 | (2) |
|
16 Fluid Models for Nonlinear Electrostatic Waves: Magnetized Case |
|
|
335 | (8) |
|
16.1 Cold electrons with immobile ions |
|
|
335 | (1) |
|
|
336 | (3) |
|
16.3 Simplified special cases |
|
|
339 | (1) |
|
16.3.1 B-parallel propagation |
|
|
339 | (1) |
|
16.3.2 B-perpendicular propagation |
|
|
340 | (1) |
|
16.4 Models for the low frequency response |
|
|
340 | (3) |
|
16.4.1 Quasi static response |
|
|
340 | (1) |
|
16.4.2 Low frequencies, ω << Ωci |
|
|
340 | (1) |
|
16.4.3 Ion cyclotron waves |
|
|
340 | (1) |
|
16.4.4 Lower-hybrid response |
|
|
341 | (2) |
|
|
343 | (44) |
|
|
343 | (9) |
|
17.1.1 Spatially varying magnetic fields |
|
|
345 | (1) |
|
|
346 | (1) |
|
17.1.3 Limitations of the electrostatic assumption |
|
|
346 | (1) |
|
17.1.4 Simplified linear theory with cold ions |
|
|
347 | (1) |
|
17.1.5 Dispersion relation |
|
|
348 | (2) |
|
|
350 | (1) |
|
17.1.7 The electron velocity |
|
|
350 | (2) |
|
17.1.8 Divergence-free currents |
|
|
352 | (1) |
|
17.2 Drift wave instability |
|
|
352 | (1) |
|
17.3 Resistive drift waves with Ti = 0 |
|
|
353 | (2) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
355 | (8) |
|
17.4.1 Dispersion relation |
|
|
358 | (2) |
|
17.4.2 Amplitude and phase relations |
|
|
360 | (1) |
|
|
360 | (2) |
|
|
362 | (1) |
|
17.5 Resistive drift waves with Ti > 0 |
|
|
363 | (10) |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
365 | (2) |
|
17.5.3.1 Comments on the cancellation of terms in the viscosity tensor |
|
|
367 | (1) |
|
17.5.4 Dispersion relation |
|
|
367 | (1) |
|
|
368 | (1) |
|
17.5.4.2 Resistive-g mode |
|
|
368 | (4) |
|
17.5.5 FLR stabilization of flute modes |
|
|
372 | (1) |
|
17.6 Drift waves with ion viscosity |
|
|
373 | (4) |
|
17.6.1 Dispersion relation |
|
|
374 | (1) |
|
|
374 | (1) |
|
17.6.3 Amplitude and phase relations |
|
|
375 | (1) |
|
|
376 | (1) |
|
17.6.4.1 Long-λ|| and short-λ|| stabilization points |
|
|
376 | (1) |
|
17.6.5 An apparent paradox |
|
|
376 | (1) |
|
17.7 Experimental observations of drift waves |
|
|
377 | (3) |
|
17.8 Velocity shear driven instabilities |
|
|
380 | (4) |
|
17.8.1 Shear instabilities with electron shielding |
|
|
383 | (1) |
|
|
384 | (3) |
|
18 Weakly Nonlinear Electrostatic Drift Waves |
|
|
387 | (16) |
|
18.1 Hasegawa-Mima equation |
|
|
387 | (10) |
|
18.1.1 Linearized Hasegawa-Mima equation |
|
|
389 | (1) |
|
|
389 | (1) |
|
|
390 | (3) |
|
18.1.4 Coherent three wave interactions |
|
|
393 | (1) |
|
18.1.5 Stationary solutions |
|
|
394 | (3) |
|
18.2 Hasegawa-Wakatani equations |
|
|
397 | (6) |
|
18.2.1 Linearized Hasegawa-Wakatani equations |
|
|
398 | (1) |
|
18.2.2 Conservation laws for the Hasegawa-Wakatani equations |
|
|
399 | (2) |
|
18.2.3 Comments on the Hasegawa-Wakatani equations |
|
|
401 | (2) |
|
|
403 | (10) |
|
|
403 | (3) |
|
|
405 | (1) |
|
19.2 Relation between kinetic and fluid models |
|
|
406 | (4) |
|
|
410 | (1) |
|
19.4 Drift kinetic equation |
|
|
411 | (2) |
|
20 Kinetic Description of Electron Plasma Waves |
|
|
413 | (30) |
|
20.1 Linearized equations |
|
|
414 | (1) |
|
20.2 Kinetic dispersion relation |
|
|
415 | (17) |
|
20.2.1 Landau damping the easy way |
|
|
419 | (2) |
|
20.2.2 Physical arguments for Landau damping |
|
|
421 | (2) |
|
20.2.3 Landau damping the hard way |
|
|
423 | (1) |
|
20.2.3.1 Solution by Laplace transform |
|
|
424 | (5) |
|
20.2.4 Normal-mode solution |
|
|
429 | (3) |
|
20.3 The Penrose criterion for plasma stability |
|
|
432 | (5) |
|
20.3.1 Two counter streaming cold electron beams |
|
|
435 | (2) |
|
20.4 Small amplitude power theorem |
|
|
437 | (1) |
|
20.5 Experimental investigations |
|
|
438 | (5) |
|
21 Kinetic Plasma Sound Waves |
|
|
443 | (22) |
|
21.1 Kinetic dispersion relation for ion sound waves |
|
|
444 | (2) |
|
21.1.1 Unstable ion acoustic waves |
|
|
446 | (1) |
|
21.2 Basic nonlinear dynamic equation for low frequency kinetic plasma waves |
|
|
446 | (4) |
|
21.2.1 Energy conservation |
|
|
448 | (1) |
|
21.2.2 Energy density of an ion sound wave |
|
|
449 | (1) |
|
21.3 Sound radiation from a moving charge |
|
|
450 | (8) |
|
21.3.1 Calculations in one spatial dimension |
|
|
450 | (4) |
|
21.3.2 Calculations in three spatial dimensions |
|
|
454 | (2) |
|
21.3.2.1 Numerical results |
|
|
456 | (2) |
|
21.4 A boundary value problem for wave excitation |
|
|
458 | (2) |
|
21.5 A realizable initial value problem |
|
|
460 | (5) |
|
21.5.1 Experimental results |
|
|
461 | (4) |
|
22 Nonlinear Kinetic Equilibria |
|
|
465 | (8) |
|
|
465 | (8) |
|
22.1.1 Experimental results |
|
|
469 | (2) |
|
|
471 | (2) |
|
23 Nonlinear Landau Damping |
|
|
473 | (10) |
|
23.1 Nonlinear Landau damping |
|
|
473 | (4) |
|
|
476 | (1) |
|
23.2 Damping of Korteweg-deVries ion acoustic solitons by reflected particles |
|
|
477 | (6) |
|
|
483 | (12) |
|
24.1 Conservation of energy and momentum |
|
|
487 | (1) |
|
24.2 Discussions of the asymptotic stage |
|
|
487 | (2) |
|
24.3 Experimental results |
|
|
489 | (6) |
|
A A Short Tour of Plasma Instabilities |
|
|
495 | (10) |
|
A.1 Fluid-like instabilities |
|
|
495 | (6) |
|
A.1.1 Electrostatic Rayleigh-Taylor instability |
|
|
495 | (1) |
|
A.1.2 Kelvin-Helmholtz electrostatic mode, B-parallel case |
|
|
496 | (1) |
|
A.1.3 Kelvin-Helmholtz electrostatic mode, B-perpendicular case |
|
|
496 | (1) |
|
A.1.4 Kelvin-Helmholtz electromagnetic mode |
|
|
496 | (1) |
|
A.1.5 Electrostatic drift dissipative instability |
|
|
496 | (1) |
|
A.1.6 Electrostatic drift cyclotron instability |
|
|
496 | (1) |
|
A.1.7 Drift Alfven instability |
|
|
496 | (1) |
|
A.1.8 Farley-Buneman, or "type I" electrojet instability |
|
|
497 | (1) |
|
A.1.9 Gradient, or "type II" electrojet instability |
|
|
497 | (1) |
|
A.1.10 Recombination instability |
|
|
497 | (1) |
|
A.1.11 Ballooning instability |
|
|
497 | (1) |
|
A.1.12 Mirror instability in magnetized plasmas |
|
|
498 | (1) |
|
A.1.13 Buneman instability |
|
|
498 | (1) |
|
A.1.14 Electron-electron beam instability |
|
|
498 | (1) |
|
A.1.15 Parametric decay instability |
|
|
498 | (1) |
|
A.1.16 Explosive instability |
|
|
499 | (1) |
|
A.1.17 Oscillating two stream instability |
|
|
500 | (1) |
|
A.1.18 Modulational instability |
|
|
500 | (1) |
|
A.1.19 Pierce instability |
|
|
500 | (1) |
|
A.1.20 Sausage instability of a linear pinch |
|
|
500 | (1) |
|
A.1.21 Kink instability of a linear pinch |
|
|
500 | (1) |
|
A.1.22 Fire-hose instability |
|
|
501 | (1) |
|
A.1.23 Weibel instability |
|
|
501 | (1) |
|
|
501 | (1) |
|
A.2 Kinetic instabilities |
|
|
501 | (4) |
|
A.2.1 Bump-on-tail instability |
|
|
501 | (1) |
|
A.2.2 Kinetic ion-acoustic instability |
|
|
501 | (1) |
|
A.2.3 Loss-cone instability |
|
|
502 | (1) |
|
A.2.4 Current driven ion cyclotron waves |
|
|
502 | (1) |
|
A.2.5 Beam driven ion cyclotron waves |
|
|
502 | (1) |
|
A.2.6 Kinetic electrostatic drift instability |
|
|
502 | (1) |
|
A.2.7 Kinetic drift Alfven instability |
|
|
503 | (2) |
|
B Collisional Cross Sections |
|
|
505 | (8) |
|
B.1 Cross sections in general |
|
|
505 | (2) |
|
|
507 | (2) |
|
B.3 A statistical model for collisions |
|
|
509 | (4) |
|
B.3.1 Analytical collision model |
|
|
511 | (1) |
|
|
511 | (2) |
|
C The Plasma Dispersion Function |
|
|
513 | (4) |
|
C.1 The plasma dispersion function |
|
|
513 | (3) |
|
C.2 Approximations to the plasma dispersion function |
|
|
516 | (1) |
|
|
517 | (4) |
|
|
517 | (1) |
|
|
517 | (1) |
|
|
517 | (1) |
|
|
518 | (1) |
|
|
518 | (1) |
|
D.6 The Jacobian determinant |
|
|
519 | (2) |
|
D.6.1 Cylindrical coordinates |
|
|
519 | (1) |
|
D.6.2 Spherical coordinates |
|
|
519 | (2) |
|
E Useful Vector Relations |
|
|
521 | (4) |
|
E.1 Some basic vector relations |
|
|
521 | (1) |
|
E.2 Some basic differential expressions |
|
|
521 | (4) |
|
E.2.1 Differential operators in spherical geometry |
|
|
522 | (1) |
|
E.2.2 Differential operators in cylindrical geometry |
|
|
523 | (2) |
|
|
525 | (4) |
|
|
525 | (1) |
|
F.2 Selected data of geophysical and astrophysical importance |
|
|
526 | (1) |
|
F.3 Approximate expressions |
|
|
527 | (2) |
Bibliography |
|
529 | (20) |
Index |
|
549 | |