Muutke küpsiste eelistusi

Waves, Particles and Fields: Introducing Quantum Field Theory [Kõva köide]

(Fischer-Cripps Laboratories Pty Ltd, Sydney, Australia)
  • Formaat: Hardback, 338 pages, kõrgus x laius: 254x178 mm, kaal: 775 g, 6 Tables, black and white; 103 Illustrations, black and white
  • Ilmumisaeg: 25-Jun-2019
  • Kirjastus: CRC Press
  • ISBN-10: 0367198789
  • ISBN-13: 9780367198787
  • Formaat: Hardback, 338 pages, kõrgus x laius: 254x178 mm, kaal: 775 g, 6 Tables, black and white; 103 Illustrations, black and white
  • Ilmumisaeg: 25-Jun-2019
  • Kirjastus: CRC Press
  • ISBN-10: 0367198789
  • ISBN-13: 9780367198787

This book fills a gap in the middle ground between quantum mechanics of a single electron to the concept of a quantum field. In doing so, the book is divided into two parts; the first provides the necessary background to quantum theory extending from Planck’s formulation of black body radiation to Schrodinger’s equation; and the second part explores Dirac’s relativistic electron to quantum fields, finishing with an description of Feynman diagrams and their meaning.

Much more than a popular account, yet not too heavy so as to be inaccessible, this book assumes no prior knowledge of quantum physics or field theory and provides the necessary foundations for readers to then progress to more advanced texts on quantum field theory. It will be of interest to undergraduate students in physics and mathematics, in addition to an interested, general audience.

Features:

  • Provides an extensive yet accessible background to the concepts
  • Contains numerous, illustrative diagrams
    • Presents in-depth explanations of difficult subjects
  • Arvustused

    "Formal initiation into 20th-century physics occurs when one begins a systematic study of relativity and quantum mechanics. There are any number of standard texts and lecture notes on these two foundations of todays physics. Unlike the classic texts of Leonard Schiff, David Bohm, David Griffiths, and Albert Messiah, this volume offers a sturdy steppingstone to the grand edifice: it is well organized and clearly presented, with only brief introductory notes to the topics.

    Fischer-Cripps (formerly, Univ. of Technology, Sydney) presents the student with all the required mathematics in a succinct way. A brief discussion of vector space would have been a worthwhile addition. Those who have not previously seen scalars, vectors, and complex numbers need to do some serious work before venturing into this text, which only reviews these concepts. Readers with some acquaintance with the basics will learn the concepts, structure, and bases of the physics that is essential for an understanding of quantum field theory, leading to Feynman diagrams. This book can serve as an excellent text not only for students who plan to specialize eventually in high-powered theoretical physics, but also for those whose goal may be to work in nuclear physics, astrophysics, solid-state physics, and the like. All college libraries should own this work.

    Summing Up: Highly recommended. Upper-division undergraduates. Students enrolled in two-year technical programs."

    V. V. Raman, emeritus, Rochester Institute of Technology in CHOICE, September 2020

    Acknowledgements xi
    1 Mathematics
    1(18)
    1.1 Introduction
    1(1)
    1.2 Complex Numbers
    1(5)
    1.2.1 Complex Numbers
    1(3)
    1.2.2 Complex Quantities
    4(1)
    1.2.3 Complex Functions
    5(1)
    1.3 Scalars and Vectors
    6(5)
    1.3.1 Scalars
    6(1)
    1.3.2 Vectors
    6(3)
    1.3.3 Dot and Cross Product
    9(1)
    1.3.4 Vector Differentiation
    10(1)
    1.4 Differential Equations
    11(3)
    1.4.1 Differential Equations
    11(1)
    1.4.2 Solutions to Differential Equations
    12(1)
    1.4.3 Differential Operators
    12(2)
    1.5 Partial Derivatives
    14(1)
    1.6 Matrices
    14(5)
    2 Waves
    19(16)
    2.1 Introduction
    19(1)
    2.2 Periodic Motion
    19(1)
    2.3 Simple Harmonic Motion
    20(2)
    2.4 Wave Function
    22(2)
    2.5 Wave Equation
    24(2)
    2.6 Complex Representation of a Wave
    26(2)
    2.7 Energy Carried by a Wave
    28(2)
    2.8 Superposition
    30(1)
    2.9 Standing Waves
    31(2)
    2.10 Beats
    33(1)
    2.11 Superposition in Complex Form
    34(1)
    3 Electromagnetic Waves
    35(10)
    3.1 Electromagnetism
    35(5)
    3.2 Energy in Electromagnetic Waves
    40(5)
    4 Kinetic Theory of Gases
    45(26)
    4.1 Introduction
    45(1)
    4.2 Pressure and Temperature
    46(5)
    4.2.1 Pressure
    46(2)
    4.2.2 Temperature
    48(1)
    4.2.3 Degrees of Freedom
    49(1)
    4.2.4 Equipartition of Energy
    49(1)
    4.2.5 Internal Energy
    50(1)
    4.3 Statistical Mechanics
    51(20)
    4.3.1 Statistical Weight
    51(2)
    4.3.2 Boltzmann Distribution
    53(1)
    4.3.3 Velocity Distribution
    54(3)
    4.3.4 Partition Function
    57(2)
    4.3.5 Properties of the Partition Function
    59(3)
    4.3.6 Energy Density of States
    62(1)
    4.3.7 Energy in a Harmonic Oscillator System
    63(3)
    4.3.8 Average Energy in a Harmonic Oscillator System
    66(5)
    5 Quantum Theory
    71(18)
    5.1 Introduction
    71(1)
    5.2 Black Body Radiation
    71(2)
    5.3 Cavity Radiation
    73(1)
    5.4 Frequency Density of States
    74(6)
    5.4.1 Density of States -- 1D
    74(1)
    5.4.2 Density of States -- 1D Revisited
    75(1)
    5.4.3 Density of States -- 2D
    76(2)
    5.4.4 Density of States -- 3D
    78(2)
    5.5 Rayleigh--Jeans Radiation Law
    80(2)
    5.6 The Birth of Quantum Physics
    82(7)
    5.6.1 Introduction
    82(1)
    5.6.2 Boltzmann Statistics
    83(1)
    5.6.3 Rayleigh--Jeans Radiation Law
    83(1)
    5.6.4 Planck's Radiation Law
    84(1)
    5.6.5 Forms of the Radiation Laws
    85(1)
    5.6.6 Stefan--Boltzmann Radiation Law
    86(1)
    5.6.7 Wien Displacement Law
    87(2)
    6 The Bohr Atom
    89(12)
    6.1 Introduction
    89(1)
    6.2 The Photoelectric Effect
    89(1)
    6.3 Line Spectra
    90(1)
    6.4 The Bohr Atom
    91(3)
    6.5 The Rydberg Constant
    94(2)
    6.6 Matter Waves
    96(3)
    6.7 The Photon
    99(2)
    7 The New Quantum Theory
    101(30)
    7.1 Introduction
    101(1)
    7.2 The Schrodinger Equation
    101(3)
    7.3 Solutions to the Schrodinger Equation
    104(15)
    7.3.1 Separation of Variables
    104(2)
    7.3.2 Solution to the Time-Dependent Schrodinger Equation
    106(1)
    7.3.3 The Wave Function
    107(1)
    7.3.4 Normalisation
    108(1)
    7.3.5 Solutions to the Time-Independent Schrodinger Equation
    109(1)
    7.3.5.1 The Zero-Potential
    109(5)
    7.3.5.2 The Infinite Square Well Potential
    114(5)
    7.4 Significance of the Boundaries
    119(3)
    7.4.1 Free Electron
    119(1)
    7.4.2 Bound Electron
    120(2)
    7.5 Wave Functions and Photons
    122(3)
    7.6 Spin
    125(3)
    7.6.1 Spin Angular Momentum
    125(1)
    7.6.2 Quantum Numbers
    126(2)
    7.7 Significance of the Schrodinger Equation
    128(3)
    8 Relativity
    131(38)
    8.1 Introduction
    131(1)
    8.2 Special Relativity
    131(30)
    8.2.1 The Michelson--Morley Experiment
    131(4)
    8.2.2 The Principle of Relativity
    135(1)
    8.2.3 Frames of Reference
    136(1)
    8.2.3.1 Distance
    136(1)
    8.2.3.2 Velocity and Acceleration
    137(1)
    8.2.4 Postulates of Special Relativity
    137(1)
    8.2.5 Time Dilation
    138(2)
    8.2.6 Length Contraction
    140(2)
    8.2.7 Lorentz Transformations
    142(1)
    8.2.7.1 Lorentz Distance Transformation
    142(1)
    8.2.7.2 Lorentz Time Transformation
    143(2)
    8.2.7.3 Lorentz Velocity Transformation
    145(2)
    8.2.7.4 Momentum and Mass Transformations
    147(3)
    8.2.7.5 Mass and Energy Transformations
    150(4)
    8.2.8 Consequences of Special Relativity
    154(1)
    8.2.8.1 Energy and Momentum
    154(2)
    8.2.8.2 Kinetic Energy
    156(1)
    8.2.8.3 Photons
    157(1)
    8.2.9 Summary of Special Relativity
    158(1)
    8.2.9.1 Length
    158(1)
    8.2.9.2 Time
    158(1)
    8.2.9.3 Velocity
    159(1)
    8.2.9.4 Mass
    159(1)
    8.2.9.5 Momentum
    160(1)
    8.2.9.6 Energy
    160(1)
    8.3 General Relativity
    161(5)
    8.3.1 Introduction
    161(1)
    8.3.2 Space-Time
    162(4)
    8.4 Conclusion
    166(3)
    9 Advanced Mathematics
    169(30)
    9.1 Vector Calculus
    169(11)
    9.1.1 Vector Differential Operator
    169(1)
    9.1.2 Line Integral
    170(4)
    9.1.3 Multiple Integrals
    174(1)
    9.1.4 Surface and Volume Integrals
    175(4)
    9.1.5 Stokes' Theorem
    179(1)
    9.2 Gauss' Law
    180(2)
    9.3 Continuity Equation
    182(1)
    9.4 Four-Vectors
    183(6)
    9.4.1 Four-Position
    183(2)
    9.4.2 Four-Velocity
    185(1)
    9.4.3 Four-Momentum
    186(1)
    9.4.4 Dot Product of Four-Vectors
    187(1)
    9.4.5 Four-Differential Operator, and the d'Alembertian
    188(1)
    9.5 The Hamiltonian
    189(2)
    9.6 The Lagrangian
    191(8)
    9.6.1 Action
    191(1)
    9.6.2 Variational Calculus
    192(2)
    9.6.3 Equations of Motion
    194(5)
    10 Relativistic Quantum Mechanics
    199(16)
    10.1 The Dirac Equation
    199(4)
    10.2 Solutions to the Dirac Equation
    203(7)
    10.2.1 At Rest
    203(3)
    10.2.2 Constant Velocity
    206(4)
    10.3 Antimatter
    210(1)
    10.4 Natural Units
    210(2)
    10.5 Single Particle Dirac Equation
    212(3)
    11 Probability Flow
    215(10)
    11.1 Introduction
    215(1)
    11.2 Probability Current
    215(3)
    11.3 The Adjoint Dirac Equation
    218(7)
    12 Wave Functions and Spinors
    225(8)
    12.1 Particles
    225(2)
    12.2 Dirac Spinors
    227(2)
    12.3 Antiparticles
    229(4)
    13 Classical Field Theory
    233(14)
    13.1 Classical Field Theory
    233(1)
    13.2 Action
    233(2)
    13.3 The Lagrangian
    235(3)
    13.4 The Euler-Lagrange Equation
    238(4)
    13.5 Lagrangian for a Free Particle
    242(3)
    13.6 Lagrangian for a Free Particle in a Scalar Field
    245(1)
    13.7 Lagrangian for the Dirac Field
    245(2)
    14 Lorentz Invariance
    247(12)
    14.1 Introduction
    247(1)
    14.2 Transformations
    248(1)
    14.3 Contravariant and Covariant Notation
    249(6)
    14.4 Transformation Matrix
    255(4)
    15 The Electromagnetic Field
    259(30)
    15.1 Introduction
    259(1)
    15.2 The Scalar Potential
    260(2)
    15.3 The Vector Potential
    262(1)
    15.4 Maxwell's Equations in Potential Form
    263(4)
    15.4.1 Maxwell's Equations and the Vector Potential
    263(2)
    15.4.2 The Four-Potential
    265(2)
    15.5 Transformations of the Four-Potential
    267(1)
    15.6 Lagrangian for the Electromagnetic Field
    268(3)
    15.6.1 The Lagrangian for a Field
    268(1)
    15.6.2 The Lagrangian for the Electromagnetic Field
    269(2)
    15.7 The Electromagnetic Field Tensor
    271(8)
    15.7.1 The Electromagnetic Field Tensor
    271(4)
    15.7.2 The Lagrangian for the Electromagnetic Field Tensor
    275(4)
    15.8 Charged Particle in an Electromagnetic Field
    279(4)
    15.9 Transformations of the Electromagnetic Field
    283(2)
    15.10 The Electromagnetic Wave
    285(4)
    16 The Quantum Field
    289(20)
    16.1 Introduction
    289(1)
    16.2 Classical Fields
    290(2)
    16.2.1 Scalar Field (Spin 0)
    290(1)
    16.2.2 Dirac Field (Spin 1/2)
    291(1)
    16.2.3 Vector Field (Spin 1)
    291(1)
    16.3 The Harmonic Oscillator
    292(14)
    16.3.1 Commutator
    292(2)
    16.3.2 Energy Levels
    294(1)
    16.3.2.1 Energy Levels
    294(1)
    16.3.2.2 Power Series Method
    294(2)
    16.3.2.3 Operator Method
    296(3)
    16.3.3 The Harmonic Oscillator Field
    299(2)
    16.3.4 Particles
    301(3)
    16.3.5 The Quantum Field
    304(2)
    16.4 Propagators
    306(2)
    16.5 Interactions
    308(1)
    17 Feynman Diagrams
    309(20)
    17.1 Introduction
    309(1)
    17.2 Quantum Electrodynamics
    309(5)
    17.2.1 Path Taken by a Photon
    309(1)
    17.2.2 Alternate Paths
    310(2)
    17.2.3 Successive Steps
    312(2)
    17.3 The Behaviour of Light
    314(3)
    17.3.1 Straight-Line Path
    314(1)
    17.3.2 Single Slit Diffraction
    315(1)
    17.3.3 Double Slit Interference
    316(1)
    17.4 Action
    317(1)
    17.5 Feynman Diagrams
    318(6)
    17.5.1 Feynman Diagrams
    318(2)
    17.5.2 External Particles
    320(1)
    17.5.2.1 Particles
    320(1)
    17.5.2.2 Antiparticles
    321(1)
    17.5.2.3 Photons
    321(1)
    17.5.3 Interactions
    321(1)
    17.5.3.1 Vertex Factor
    321(1)
    17.5.3.2 Photon Propagator
    322(1)
    17.5.4 Electron-Photon Interactions
    323(1)
    17.6 Components of a Feynman Diagram
    324(1)
    17.7 A Feynman Diagram
    325(1)
    17.8 Renormalisation
    326(1)
    17.9 Connection to Experimental Results
    327(2)
    18 Conclusion
    329(2)
    Appendix 331(6)
    Index 337
    Anthony Fischer-Cripps is an experienced lecturer in physics and a former senior scientist at CSIRO, Australians national scientific research institution. Dr. Cripps has published several student books over the years as well as undertaking fundamental research in applied physics in the field of nanoindentation.