Muutke küpsiste eelistusi

Waves And Wave Interactions In Plasmas [Kõva köide]

(Beluti Mkm High School, India), (K.k.m. College (A Constituent Unit Of Munger Univeristy), India), (Visva-bharati University, India)
  • Formaat: Hardback, 380 pages
  • Ilmumisaeg: 18-Jan-2023
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981126533X
  • ISBN-13: 9789811265334
Teised raamatud teemal:
  • Formaat: Hardback, 380 pages
  • Ilmumisaeg: 18-Jan-2023
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981126533X
  • ISBN-13: 9789811265334
Teised raamatud teemal:
"This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomenais essential. In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waveswhich are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field"--
Preface v
Acknowledgments vii
Chapter 1 Introduction to Plasmas
1(42)
1.1 Introduction
1(1)
1.2 Saha Equation and Plasma Temperature
2(2)
1.3 Basic Concepts of Plasma
4(6)
1.3.1 Basic dimensionless parameters
4(1)
1.3.2 Debye length and Debye shielding
4(3)
1.3.3 Quasineutrality
7(1)
1.3.4 Response time
7(1)
1.3.5 Plasma frequency
8(1)
1.3.6 Collisions and coupling limit
9(1)
1.4 Criteria for Plasma
10(1)
1.5 High-Temperature Plasmas
10(1)
1.6 Mathematical Description
10(1)
1.7 Magnetized Plasmas
11(3)
1.8 Single Particle Motion in Uniform Electric and Magnetic Field
14(1)
1.9 Fluid Approach
15(3)
1.10 Maxwell's Equations
18(2)
1.11 Electromagnetic Wave Equation in Free Space
20(1)
1.12 Plasma Kinetic Theory
21(7)
1.12.1 Distribution function
21(1)
1.12.2 Macroscopic variables
22(1)
1.12.3 Maxwellian distribution function
22(1)
1.12.4 Non-Maxwellian distribution in plasmas
23(1)
1.12.5 Nonthermal distribution
23(1)
1.12.6 Superthermal distribution
24(1)
1.12.7 q-nonextensive distribution
25(3)
1.13 Closure Form of Moment Equation
28(4)
1.13.1 Equation of continuity
29(1)
1.13.2 Equation of motion
30(2)
1.13.3 Equation of energy
32(1)
1.14 Dusty Plasma
32(4)
1.15 Quantum Plasma
36(3)
1.16 Quantum Plasma Models
39(4)
References
41(2)
Chapter 2 Introduction to Waves in Plasma
43(44)
2.1 Introduction
43(1)
2.2 Mathematical Description of Waves
44(2)
2.3 Dispersion Relation
46(4)
2.4 Linear Waves in Plasmas
50(1)
2.5 Plasma Oscillation
51(1)
2.6 Electromagnetic Waves
52(1)
2.7 Upper Hybrid Frequency
53(2)
2.8 Electrostatic Ion Cyclotron Waves
55(1)
2.9 Lower Hybrid Frequency
56(2)
2.10 Electromagnetic Waves with B0 = 0
58(2)
2.11 Electromagnetic Waves Perpendicular to Bo
60(3)
2.11.1 Ordinary wave
60(1)
2.11.2 Extraordinary wave
61(2)
2.12 Electromagnetic Waves Parallel to B0
63(3)
2.13 Hydromagnetic Waves
66(5)
2.13.1 Alfven wave
66(3)
2.13.2 Magnetosonic wave
69(2)
2.14 Some Acoustic Type of Waves in Plasmas
71(7)
2.14.1 Electron plasma waves
72(1)
2.14.2 Ion acoustic waves
73(3)
2.14.3 Dust acoustic waves
76(1)
2.14.4 Dust ion acoustic waves
77(1)
2.15 Nonlinear Wave
78(4)
2.16 Solitary Waves and Solitons
82(2)
2.16.1 History of solitary waves and solitons
82(2)
2.17 Properties of Solitons
84(3)
References
85(2)
Chapter 3 Solution of Nonlinear Wave Equations
87(44)
3.1 Nonlinear Waves
87(1)
3.2 Direct Method
87(11)
3.2.1 Korteweg-de Vries (KdV) equation
88(2)
3.2.2 Cnoidal waves
90(3)
3.2.3 Modified KdV (MKdV) equation
93(1)
3.2.4 Schamel-type KdV (S-KdV) equation
94(1)
3.2.5 Burgers' equation
95(1)
3.2.6 KP equation
96(1)
3.2.7 Modified KP equation
97(1)
3.3 Hyperbolic Tangent Method
98(7)
3.3.1 KdV equation
100(1)
3.3.2 Modified KdV equation
101(1)
3.3.3 Burgers' equation
102(1)
3.3.4 KdV Burgers' equation
103(2)
3.3.5 KP equation
105(1)
3.4 Tanh--Coth Method
105(4)
3.4.1 KdV equation
106(3)
3.4.2 Burgers' equation
109(1)
3.5 Solution of KP Burger Equation
109(3)
3.6 Conservation Laws and Integrals of the Motions
112(5)
3.6.1 Conserved quantity of KdV equation
116(1)
3.7 Approximate Analytical Solutions
117(4)
3.7.1 Damped KdV equation
117(1)
3.7.2 Force KdV equation
118(1)
3.7.3 Damped-force KdV equation
119(2)
3.8 Multisoliton and Hirota's Direct Method
121(10)
3.8.1 Hirota's method
121(2)
3.8.2 Multisoliton solution of the KdV equation
123(4)
3.8.3 Multisoliton solution of the KP equation
127(2)
References
129(2)
Chapter 4 RPT and Some Evolution Equations
131(70)
4.1 Perturbation Technique
131(4)
4.2 Reductive Perturbation Technique
135(2)
4.3 Korteweg-de Vries (KdV) Equation
137(7)
4.4 Modified KdV (MKdV) Equation
144(4)
4.5 Gardner's Equation
148(2)
4.6 Gardner and Modified Gardner's (MG) Equation
150(3)
4.7 Damped Forced KdV (DFKdV) Equation
153(2)
4.8 Damped Forced MKdV (DFMKdV) Equation
155(4)
4.9 Forced Schamel KdV (SKdV) Equation
159(7)
4.10 Burgers' Equation
166(4)
4.11 Modified Burgers' Equation
170(3)
4.12 KdV Burgers' (KdVB) Equation
173(2)
4.13 Damped KdVB Equation
175(3)
4.14 Kadomtsev--Petviashvili (KP) Equation
178(3)
4.15 Modified KP (MKP) Equation
181(2)
4.16 Further MKP (FMKP) Equation
183(3)
4.17 KP Burgers' (KPB) Equation
186(3)
4.18 Damped KP (DKP) Equation
189(3)
4.19 Zakharov--Kuznetsov (ZK) Equation
192(3)
4.20 ZK Burgers' (ZKB) Equation
195(2)
4.21 Damped ZK (DZK) Equation
197(4)
References
199(2)
Chapter 5 Dressed Soliton and Envelope Soliton
201(38)
5.1 Dressed Soliton
201(1)
5.2 Dressed Soliton in a Classical Plasma
201(7)
5.3 Dressed Soliton in a Dusty Plasma
208(5)
5.4 Dressed Soliton in Quantum Plasma
213(5)
5.5 Dressed Soliton of ZK Equation
218(6)
5.6 Envelope Soliton
224(1)
5.7 Nonlinear Schrodinger Equation (NLSE)
225(14)
References
238(1)
Chapter 6 Evolution Equations in Nonplanar Geometry
239(26)
6.1 Introduction
239(1)
6.2 Basic Equations of Motion in Nonplanar Geometry
240(4)
6.3 Nonplanar KdV Equation in Classical Plasma
244(4)
6.4 Nonplanar KdV Equation in Quantum Plasma
248(2)
6.5 Nonplanar Gardner's or Modified Gardner's Equation
250(5)
6.6 Nonplanar KP and KP Burgers' Equation
255(5)
6.7 Nonplanar ZK Equation
260(2)
6.8 Nonplanar ZKB Equation
262(3)
References
264(1)
Chapter 7 Collision of Solitons
265(48)
7.1 Introduction
265(1)
7.2 Head-on Collision
265(22)
7.2.1 Head-on collision of solitary waves in planar geometry
269(5)
7.2.2 Head-on collision of solitons in a Magnetized Quantum Plasma
274(5)
7.2.3 Head-on collision of magneto-acoustic solitons in spin-1/2 fermionic quantum plasma
279(4)
7.2.4 Interaction of DIASWs in nonplanar geometry
283(4)
7.3 Oblique Collision
287(7)
7.3.1 Oblique collision of DIASWs in quantum plasmas
288(6)
7.4 Overtaking Collision
294(6)
7.4.1 Overtaking interaction of two solitons and three solitons of EAWs in quantum plasma
294(6)
7.5 Soliton Interaction and Soliton Turbulence
300(4)
7.6 Statistical Characteristics of the Wavefield
304(5)
7.7 Plasma Parameters on Soliton Turbulence
309(4)
References
310(3)
Chapter 8 Sagdeev's Pseudopotential Approach
313(46)
8.1 Nonperturbative Approach
313(1)
8.2 Sagdeev's Pseudopotential Approach
313(9)
8.2.1 Physical interpretation of Sagdeev's potential
316(2)
8.2.2 Determination of the range of Mach number
318(1)
8.2.3 Shape of the solitary waves
318(1)
8.2.4 Physical interpretation of double layers
319(1)
8.2.5 Small amplitude approximation
320(2)
8.3 Effect of Finite Ion Temperature
322(2)
8.4 Large-amplitude DASWs
324(5)
8.5 Large-amplitude Double Layers
329(5)
8.6 Effect of Ion Kinematic Viscosity
334(6)
8.7 DIASWs in Magnetized Plasma
340(6)
8.8 Solitary Kinetic Alfven Waves
346(4)
8.9 Collapse of EA Solitary Waves
350(3)
8.10 Collapse of DASWs in Presence of Trapped Ions
353(6)
References
357(2)
Chapter 9 Conclusion and Future Scopes
359(4)
Index 363