Muutke küpsiste eelistusi

Whole-Body Impedance Control of Wheeled Humanoid Robots 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 187 pages, kõrgus x laius: 235x155 mm, kaal: 4321 g, 71 Illustrations, color; 11 Illustrations, black and white; XV, 187 p. 82 illus., 71 illus. in color., 1 Hardback
  • Sari: Springer Tracts in Advanced Robotics 116
  • Ilmumisaeg: 07-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331940556X
  • ISBN-13: 9783319405568
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 187 pages, kõrgus x laius: 235x155 mm, kaal: 4321 g, 71 Illustrations, color; 11 Illustrations, black and white; XV, 187 p. 82 illus., 71 illus. in color., 1 Hardback
  • Sari: Springer Tracts in Advanced Robotics 116
  • Ilmumisaeg: 07-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331940556X
  • ISBN-13: 9783319405568
Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment.After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By i

nterconnecting the whole-body controller with an artificial intelligence, the immense potential of the integrated approach for complex real-world applications is shown. Several typical household chores, such as autonomously wiping a window or sweeping the floor with a broom, are successfully performed on the mobile humanoid robot Rollin" Justin of the German Aerospace Center (DLR).The results suggest the presented controller for a large variety of fields of application such as service robotics, human-robot cooperation in industry, telepresence in medical applications, space robotics scenarios, and the operation of mobile robots in dangerous and hazardous environments.

Introduction.-Fundamentals.- Control Tasks Based on Artificial Potential Fields.- Redundancy Resolution by Null Space Projections.- Stability Analysis.- Whole-Body Coordination.- Integration of the Whole-Body Controller into a Higher-Level Framework.- Summary.
1 Introduction
1(12)
1.1 Motivation
1(2)
1.2 Related Work
3(2)
1.3 Problem Statement
5(1)
1.4 Concept of Whole-Body Impedance
6(2)
1.5 Contributions and Overview
8(5)
2 Fundamentals
13(10)
2.1 Robot Kinematics and Dynamics
13(3)
2.1.1 Forward Kinematics, Jacobian Matrices, and Power Ports
13(1)
2.1.2 Derivation of the Equations of Motion
14(2)
2.1.3 Rigid Body Dynamics
16(1)
2.2 Compliant Motion Control of Robotic Systems
16(3)
2.2.1 Impedance Control
17(1)
2.2.2 Admittance Control
18(1)
2.3 Humanoid Robot Rollin' Justin
19(4)
2.3.1 Design and Hardware
19(2)
2.3.2 Modeling Assumptions
21(2)
3 Control Tasks Based on Artificial Potential Fields
23(32)
3.1 Self-Collision Avoidance
24(10)
3.1.1 Geometric Collision Model
25(1)
3.1.2 Repulsive Potential
26(2)
3.1.3 Damping Design
28(3)
3.1.4 Control Design
31(2)
3.1.5 Experiments
33(1)
3.2 Singularity Avoidance for Nonholonomic, Wheeled Platforms
34(10)
3.2.1 Instantaneous Center of Rotation
34(2)
3.2.2 Controllability and Repulsion
36(1)
3.2.3 Effect on the Instantaneous Center of Rotation
37(2)
3.2.4 Effect on the Wheel
39(1)
3.2.5 Control Design
39(1)
3.2.6 Simulations and Experiments
40(4)
3.3 Posture Control for Kinematically Coupled Torso Structures
44(6)
3.3.1 Model of the Torso of Rollin' Justin
45(1)
3.3.2 Kinematic Constraints
45(1)
3.3.3 Dynamic Constraints
46(3)
3.3.4 Control Design
49(1)
3.3.5 Experiments
49(1)
3.4 Classical Objectives in Reactive Control
50(2)
3.4.1 Cartesian Impedance
50(1)
3.4.2 Manipulator Singularity Avoidance
51(1)
3.4.3 Avoidance of Mechanical End Stops
52(1)
3.5 Summary
52(3)
4 Redundancy Resolution by Null Space Projections
55(44)
4.1 Strictness of the Hierarchy
56(2)
4.1.1 Successive Projections
56(1)
4.1.2 Augmented Projections
57(1)
4.2 Consistency of the Projections
58(7)
4.2.1 Static Consistency
59(1)
4.2.2 Dynamic Consistency
60(4)
4.2.3 Stiffness Consistency
64(1)
4.3 Comparison of Null Space Projectors
65(13)
4.3.1 Simulations
66(4)
4.3.2 Experiments
70(5)
4.3.3 Discussion
75(3)
4.4 Unilateral Constraints in the Task Hierarchy
78(19)
4.4.1 Basics
79(2)
4.4.2 Ensuring Continuity
81(5)
4.4.3 Simulations
86(1)
4.4.4 Experiments
87(8)
4.4.5 Discussion
95(2)
4.5 Summary
97(2)
5 Stability Analysis
99(42)
5.1 Whole-Body Impedance with Kinematically Controlled Platform
99(17)
5.1.1 Subsystems
100(6)
5.1.2 Control Design
106(1)
5.1.3 Proof of Stability
107(2)
5.1.4 Experiments
109(5)
5.1.5 Discussion
114(2)
5.2 Multi-Objective Compliance Control
116(23)
5.2.1 Problem Formulation
118(2)
5.2.2 Hierarchical Dynamics Representation
120(6)
5.2.3 Control Design
126(2)
5.2.4 Proof of Stability
128(3)
5.2.5 Simulations and Experiments
131(6)
5.2.6 Discussion
137(2)
5.3 Summary
139(2)
6 Whole-Body Coordination
141(10)
6.1 Order of Tasks in the Hierarchy
142(2)
6.2 Implementation on Rollin' Justin
144(4)
6.3 Summary
148(3)
7 Integration of the Whole-Body Controller into a Higher-Level Framework
151(6)
7.1 Intelligent Parameterization of the Whole-Body Controller
153(1)
7.2 Communication Channel Between Controller and Planner
153(1)
7.3 Real-World Applications for a Service Robot
154(2)
7.4 Summary
156(1)
8 Summary
157(4)
Appendix A Workspace of the Torso of Rollin' Justin 161(2)
Appendix B Null Space Definitions and Proofs 163(6)
Appendix C Proofs for the Stability Analysis 169(6)
Appendix D Stability Definitions 175(2)
References 177