Muutke küpsiste eelistusi

Wind Energy Handbook 3rd edition [Kõva köide]

, (CREST, Loughborough University, UK), , ,
  • Formaat: Hardback, 1008 pages, kõrgus x laius x paksus: 244x170x61 mm, kaal: 1899 g
  • Ilmumisaeg: 13-May-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119451094
  • ISBN-13: 9781119451099
Teised raamatud teemal:
  • Formaat: Hardback, 1008 pages, kõrgus x laius x paksus: 244x170x61 mm, kaal: 1899 g
  • Ilmumisaeg: 13-May-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119451094
  • ISBN-13: 9781119451099
Teised raamatud teemal:

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  

The newly revised Third Edition of the Wind Energy Handbook delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced.  

The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis.  

The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.

References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 

  • The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics 
  • The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory 
  • Design loads for horizontal axis wind turbines, including the prescriptions of international standards 
  • Alternative machine architectures 
  • The design of key components 
  • Wind turbine controller design for fixed and variable speed machines 
  • The integration of wind farms into the electrical power system 
  • Wind farm design, siting constraints and the assessment of environmental impact 

Perfect for engineers and scientists learning about wind turbine technology, the Wind Energy Handbook will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology. 

About the Authors xxi
Preface to Second Edition xxiii
Preface to Third Edition xxv
Acknowledgements for the First Edition xxix
Acknowledgements for the Second Edition xxxi
Acknowledgements for the Third Edition xxxiii
List of Symbols
xxxv
Figures C1 and C2 -- coordinate systems
xlv
1 Introduction
1(10)
1.1 Historical development of wind energy
1(5)
1.2 Modern wind turbines
6(2)
1.3 Scope of the book
8(3)
References
9(1)
Websites
10(1)
Further reading
10(1)
2 The Wind Resource
11(28)
2.1 The nature of the wind
11(2)
2.2 Geographical variation in the wind resource
13(1)
2.3 Long-term wind speed variations
14(1)
2.4 Annual and seasonal variations
14(2)
2.5 Synoptic and diurnal variations
16(1)
2.6 Turbulence
16(14)
2.6.1 The nature of turbulence
16(2)
2.6.2 The boundary layer
18(2)
2.6.3 Turbulence intensity
20(2)
2.6.4 Turbulence spectra
22(2)
2.6.5 Length scales and other parameters
24(2)
2.6.6 Asymptotic limits
26(1)
2.6.7 Cross-spectra and coherence functions
27(2)
2.6.8 The Mann model of turbulence
29(1)
2.7 Gust wind speeds
30(1)
2.8 Extreme wind speeds
31(4)
2.8.1 Extreme winds in standards
33(2)
2.9 Wind speed prediction and forecasting
35(2)
2.9.1 Statistical methods
35(1)
2.9.2 Meteorological methods
36(1)
2.9.3 Current methods
36(1)
2.10 Turbulence in complex terrain
37(2)
References
37(2)
3 Aerodynamics Of Horizontal Axis Wind Turbines
39(94)
3.1 Introduction
40(1)
3.2 The actuator disc concept
41(4)
3.2.1 Simple momentum theory
42(1)
3.2.2 Power coefficient
43(1)
3.2.3 The Betz limit
43(1)
3.2.4 The thrust coefficient
44(1)
3.3 Rotor disc theory
45(4)
3.3.1 Wake rotation
45(1)
3.3.2 Angular momentum theory
46(3)
3.3.3 Maximum power
49(1)
3.4 Vortex cylinder model of the actuator disc
49(10)
3.4.1 Introduction
49(2)
3.4.2 Vortex cylinder theory
51(1)
3.4.3 Relationship between bound circulation and the induced velocity
51(1)
3.4.4 Root vortex
52(1)
3.4.5 Torque and power
53(1)
3.4.6 Axial flow field
54(1)
3.4.7 Tangential flow field
54(2)
3.4.8 Axial thrust
56(1)
3.4.9 Radial flow and the general flow field
57(1)
3.4.10 Further development of the actuator model
58(1)
3.4.11 Conclusions
59(1)
3.5 Rotor blade theory (blade-element/momentum theory)
59(6)
3.5.1 Introduction
59(1)
3.5.2 Blade element theory
59(2)
3.5.3 The BEM theory
61(2)
3.5.4 Determination of rotor torque and power
63(2)
3.6 Actuator line theory, including radial variation
65(1)
3.7 Breakdown of the momentum theory
66(2)
3.7.1 Free-stream/wake mixing
66(1)
3.7.2 Modification of rotor thrust caused by wake breakdown
66(1)
3.7.3 Empirical determination of thrust coefficient
67(1)
3.8 Blade geometry
68(9)
3.8.1 Introduction
68(1)
3.8.2 Optimal design for variable-speed operation
68(4)
3.8.3 A simple blade design
72(2)
3.8.4 Effects of drag on optimal blade design
74(3)
3.8.5 Optimal blade design for constant-speed operation
77(1)
3.9 The effects of a discrete number of blades
77(15)
3.9.1 Introduction
77(1)
3.9.2 Tip-losses
77(5)
3.9.3 Prandtl's approximation for the tip-loss factor
82(3)
3.9.4 Blade root losses
85(1)
3.9.5 Effect of tip-loss on optimum blade design and power
86(4)
3.9.6 Incorporation of tip-loss for non-optimal operation
90(1)
3.9.7 Radial effects and an alternative explanation for tip-loss
91(1)
3.10 Stall delay
92(3)
3.11 Calculated results for an actual turbine
95(3)
3.12 The performance curves
98(4)
3.12.1 Introduction
98(1)
3.12.2 The CP -- λ performance curve
99(1)
3.12.3 The effect of solidity on performance
100(1)
3.12.4 The CQ -- λ curve
101(1)
3.12.5 The CT -- λ curve
101(1)
3.13 Constant rotational speed operation
102(4)
3.13.1 Introduction
102(1)
3.13.2 The KP --l/λ curve
102(1)
3.13.3 Stall regulation
103(1)
3.13.4 Effect of rotational speed change
104(1)
3.13.5 Effect of blade pitch angle change
104(2)
3.14 Pitch regulation
106(1)
3.14.1 Introduction
106(1)
3.14.2 Pitching to stall
106(1)
3.14.3 Pitching to feather
106(1)
3.15 Comparison of measured with theoretical performance
107(2)
3.16 Estimation of energy capture
109(4)
3.17 Wind turbine aerofoil design
113(8)
3.17.1 Introduction
113(2)
3.17.2 The NREL aerofoils
115(1)
3.17.3 The Ris0 aerofoils
116(4)
3.17.4 The Delft aerofoils
120(1)
3.17.5 General principles for outboard and inboard blade sections
120(1)
3.18 Add-ons (including blade modifications independent of the mainstructure)
121(5)
3.18.1 Devices to control separation and stalling
122(1)
3.18.2 Devices to increase CLmax and lift/drag ratio
123(1)
3.18.3 Circulation control (jet flaps)
124(2)
3.19 Aerodynamic noise
126(7)
3.19.1 Noise sources
126(1)
3.19.2 Inflow turbulence-induced blade noise
127(1)
3.19.3 Self-induced blade noise
127(1)
3.19.4 Interaction between turbulent boundary layers on the blade and the trailing edge
128(1)
3.19.5 Other blade noise sources
128(1)
3.19.6 Summary
129(1)
References
130(2)
Websites
132(1)
Further reading
132(1)
Appendix A.3 Lift and drag of aerofoils
133(212)
A3.1 Drag
134(1)
A3.2 The boundary layer
135(1)
A3.3 Boundary layer separation
136(2)
A3.4 Laminar and turbulent boundary layers and transition
138(3)
A3.5 Definition of lift and its relationship to circulation
141(4)
A3.6 The stalled aerofoil
145(1)
A3.7 The lift coefficient
145(2)
A3.8 Aerofoil drag characteristics
147(6)
A3.8.1 Symmetric aerofoils
147(2)
A3.8.2 Cambered aerofoils
149(4)
4 Further Aerodynamic Topics For Wind Turbines
153(74)
4.1 Introduction
153(1)
4.2 The aerodynamics of turbines in steady yaw
153(27)
4.2.1 Momentum theory for a turbine rotor in steady yaw
154(2)
4.2.2 Glauert's momentum theory for the yawed rotor
156(4)
4.2.3 Vortex cylinder model of the yawed actuator disc
160(3)
4.2.4 Flow expansion
163(6)
4.2.5 Related theories
169(1)
4.2.6 Wake rotation for a turbine rotor in steady yaw
170(1)
4.2.7 The blade element theory for a turbine rotor in steady yaw
171(1)
4.2.8 The blade-element-momentum theory for a rotor in steady yaw
172(3)
4.2.9 Calculated values of induced velocity
175(2)
4.2.10 Blade forces for a rotor in steady yaw
177(1)
4.2.11 Yawing and tilting moments in steady yaw
177(3)
4.3 Circular wing theory applied to a rotor in yaw
180(9)
4.3.1 Introduction
180(1)
4.3.2 The general pressure distribution theory of Kinner
181(1)
4.3.3 The axisymmetric loading distributions
182(2)
4.3.4 The anti-symmetric loading distribution
184(3)
4.3.5 The Pitt and Peters model
187(1)
4.3.6 The general acceleration potential method
188(1)
4.3.7 Comparison of methods
188(1)
4.4 Unsteady flow
189(5)
4.4.1 Introduction
189(1)
4.4.2 The acceleration potential method to analyse unsteady flow
190(1)
4.4.3 Unsteady yawing and tilting moments
191(3)
4.5 Unsteady aerofoil aerodynamics
194(7)
4.5.1 Introduction
194(1)
4.5.2 Aerodynamic forces caused by aerofoil acceleration
195(1)
4.5.3 The effect of the shed vortex wake on an aerofoil in unsteady flow
196(5)
4.6 Dynamic stall
201(6)
4.6.1 Introduction
201(1)
4.6.2 Dynamic stall models
201(6)
4.7 Computational fluid dynamics
207(20)
4.7.1 Introduction
207(1)
4.7.2 Inviscid computational methods
208(3)
4.7.3 RANS and URANS CFD methods
211(2)
4.7.4 LES and DES methods
213(1)
4.7.5 Numerical techniques for CFD
214(4)
4.7.6 Discrete methods of approximating the terms in the Navier-Stokes equations over the flow field
218(1)
4.7.7 Grid construction
219(1)
4.7.8 Full flow field simulation including ABL and wind turbines
220(2)
References
222(3)
Further reading
225(2)
5 Design Loads For Hawts
227(118)
5.1 National and international standards
227(1)
5.1.1 Historical development
227(1)
5.1.2 IEC 61400-1
228(1)
5.2 Basis for design loads
228(3)
5.2.1 Sources of loading
228(1)
5.2.2 Ultimate loads
229(1)
5.2.3 Fatigue loads
229(1)
5.2.4 Partial safety factors
229(2)
5.2.5 Functions of the control and safety systems
231(1)
5.3 Turbulence and wakes
231(2)
5.4 Extreme loads
233(7)
5.4.1 Operational load cases
233(4)
5.4.2 Non-operational load cases
237(1)
5.4.3 Blade/tower clearance
238(1)
5.4.4 Constrained stochastic simulation of wind gusts
238(2)
5.5 Fatigue loading
240(1)
5.5.1 Synthesis of fatigue load spectrum
240(1)
5.6 Stationary blade loading
240(8)
5.6.1 Lift and drag coefficients
240(1)
5.6.2 Critical configuration for different machine types
241(1)
5.6.3 Dynamic response
241(7)
5.7 Blade loads during operation
248(29)
5.7.1 Deterministic and stochastic load components
248(1)
5.7.2 Deterministic aerodynamic loads
249(9)
5.7.3 Gravity loads
258(1)
5.7.4 Deterministic inertia loads
259(1)
5.7.5 Stochastic aerodynamic loads: analysis in the frequency domain
260(10)
5.7.6 Stochastic aerodynamic loads: analysis in the time domain
270(4)
5.7.7 Extreme loads
274(3)
5.8 Blade dynamic response
277(25)
5.8.1 Modal analysis
277(3)
5.8.2 Mode shapes and frequencies
280(1)
5.8.3 Centrifugal stiffening
281(2)
5.8.4 Aerodynamic and structural damping
283(1)
5.8.5 Response to deterministic loads: step-by-step dynamic analysis
284(5)
5.8.6 Response to stochastic loads
289(3)
5.8.7 Response to simulated loads
292(1)
5.8.8 Teeter motion
292(5)
5.8.9 Tower coupling
297(5)
5.8.10 Aeroelastic stability
302(1)
5.9 Blade fatigue stresses
302(7)
5.9.1 Methodology for blade fatigue design
302(3)
5.9.2 Combination of deterministic and stochastic components
305(1)
5.9.3 Fatigue prediction in the frequency domain
305(2)
5.9.4 Wind simulation
307(1)
5.9.5 Fatigue cycle counting
308(1)
5.10 Hub and low-speed shaft loading
309(3)
5.10.1 Introduction
309(1)
5.10.2 Deterministic aerodynamic loads
310(1)
5.10.3 Stochastic aerodynamic loads
311(1)
5.10.4 Gravity loading
312(1)
5.11 Nacelle loading
312(3)
5.11.1 Loadings from rotor
312(3)
5.11.2 Nacelle wind loads
315(1)
5.12 Tower loading
315(10)
5.12.1 Extreme loads
315(1)
5.12.2 Dynamic response to extreme loads
316(2)
5.12.3 Operational loads due to steady wind (deterministic component)
318(1)
5.12.4 Operational loads due to turbulence (stochastic component)
319(3)
5.12.5 Dynamic response to operational loads
322(1)
5.12.6 Fatigue loads and stresses
323(2)
5.13 Wind turbine dynamic analysis codes
325(6)
5.14 Extrapolation of extreme loads from simulations
331(14)
5.14.1 Derivation of empirical cumulative distribution function of global extremes
331(1)
5.14.2 Fitting an extreme value distribution to the empirical distribution
332(5)
5.14.3 Comparison of extreme value distributions
337(1)
5.14.4 Combination of probability distributions
338(1)
5.14.5 Extrapolation
339(1)
5.14.6 Fitting probability distribution after aggregation
339(1)
5.14.7 Local extremes method
340(1)
5.14.8 Convergence requirements
341(1)
References
342(3)
Appendix A.5 Dynamic response of stationary blade in turbulent wind
345(421)
A5.1 Introduction
345(1)
A5.2 Frequency response function
345(2)
A5.2.1 Equation of motion
345(1)
A5.2.2 Frequency response function
346(1)
A5.3 Resonant displacement response ignoring wind variations along the blade
347(2)
A5.3.1 Linearisation of wind loading
347(1)
A5.3.2 First mode displacement response
347(1)
A5.3.3 Background and resonant response
348(1)
A5.4 Effect of across wind turbulence distribution on resonant displacement response
349(3)
A5.4.1 Formula for normalised co-spectrum
351(1)
A5.5 Resonant root bending moment
352(2)
A5.6 Root bending moment background response
354(1)
A5.7 Peak response
355(3)
A5.8 Bending moments at intermediate blade positions
358(3)
A5.8.1 Background response
358(1)
A5.8.2 Resonant response
358(1)
References
359(2)
6 Conceptual Design Of Horizontal Axis Wind Turbines
361(80)
6.1 Introduction
361(1)
6.2 Rotor diameter
361(9)
6.2.1 Cost modelling
362(1)
6.2.2 Simplified cost model for machine size optimisation: an illustration
362(3)
6.2.3 The NREL cost model
365(2)
6.2.4 The INNWIND.EU cost model
367(1)
6.2.5 Machine size growth
367(2)
6.2.6 Gravity limitations
369(1)
6.2.7 Variable diameter rotors
369(1)
6.3 Machine rating
370(5)
6.3.1 Simplified cost model for optimising machine rating in relation to diameter
370(3)
6.3.2 Relationship between optimum rated wind speed and annual mean
373(1)
6.3.3 Specific power of production machines
373(2)
6.4 Rotational speed
375(4)
6.4.1 Ideal relationship between rotational speed and solidity
375(1)
6.4.2 Influence of rotational speed on blade weight
376(1)
6.4.3 High-speed rotors
376(1)
6.4.4 Low induction rotors
377(1)
6.4.5 Noise constraint on rotational speed
378(1)
6.4.6 Visual considerations
379(1)
6.5 Number of blades
379(9)
6.5.1 Overview
379(1)
6.5.2 Ideal relationship between number of blades, rotational speed, and solidity
379(1)
6.5.3 Effect of number of blades on optimum CP in the presence of tip-loss and drag
380(1)
6.5.4 Some performance and cost comparisons
381(4)
6.5.5 Effect of number of blades on loads
385(1)
6.5.6 Noise constraint on rotational speed
386(1)
6.5.7 Visual appearance
387(1)
6.5.8 Single bladed turbines
387(1)
6.6 Teetering
388(3)
6.6.1 Load relief benefits
388(1)
6.6.2 Limitation of large excursions
389(1)
6.6.3 Pitch-teeter coupling
390(1)
6.6.4 Teeter stability on stall-regulated machines
391(1)
6.7 Power control
391(7)
6.7.1 Passive stall control
391(1)
6.7.2 Active pitch control
391(5)
6.7.3 Passive pitch control
396(1)
6.7.4 Active stall control
397(1)
6.7.5 Yaw control
397(1)
6.8 Braking systems
398(2)
6.8.1 Independent braking systems: requirements of standards
398(1)
6.8.2 Aerodynamic brake options
399(1)
6.8.3 Mechanical brake options
400(1)
6.8.4 Parking versus idling
400(1)
6.9 Fixed-speed, two-speed, variable-slip, and variable-speed operation
400(11)
6.9.1 Fixed-speed operation
401(1)
6.9.2 Two-speed operation
401(2)
6.9.3 Variable-slip operation (see also Section 8.3.8)
403(1)
6.9.4 Variable-speed operation
403(3)
6.9.5 Generator system architectures
406(1)
6.9.6 Low-speed direct drive generators
406(4)
6.9.7 Hybrid gearboxes, medium-speed generators
410(1)
6.9.8 Evolution of generator systems
410(1)
6.10 Other drive trains and generators
411(8)
6.10.1 Directly connected, fixed-speed generators
411(3)
6.10.2 Innovations to allow the use of directly connected generators
414(1)
6.10.3 Generator and drive train innovations
415(4)
6.11 Drive train mounting arrangement options
419(6)
6.11.1 Low-speed shaft mounting
419(2)
6.11.2 High-speed shaft and generator mounting
421(4)
6.12 Drive train compliance
425(1)
6.13 Rotor position with respect to tower
426(1)
6.13.1 Upwind configuration
426(1)
6.13.2 Downwind configuration
426(1)
6.14 Tower stiffness
427(3)
6.14.1 Stochastic thrust loading at blade passing frequency
427(1)
6.14.2 Tower top moment fluctuations due to blade pitch errors
428(1)
6.14.3 Tower top moment fluctuations due to rotor mass imbalance
429(1)
6.14.4 Tower stiffness categories
430(1)
6.15 Multiple rotor structures
430(5)
6.15.1 Space frame support structure
430(2)
6.15.2 Tubular cantilever arm support structure
432(1)
6.15.3 Vestas four-rotor array
432(1)
6.15.4 Cost comparison based on fundamental scaling rules
433(1)
6.15.5 Cost comparison based on NREL scaling indices
433(1)
6.15.6 Discussion
434(1)
6.16 Augmented flow
435(1)
6.17 Personnel safety and access issues
435(6)
References
437(4)
7 Component Design
441(138)
7.1 Blades
441(78)
7.1.1 Introduction
441(1)
7.1.2 Aerodynamic design
442(1)
7.1.3 Practical modifications to optimum aerodynamic design
443(1)
7.1.4 Structural design criteria
444(1)
7.1.5 Form of blade structure
444(3)
7.1.6 Blade materials and properties
447(4)
7.1.7 Static properties of glass/polyester and glass/epoxy composites
451(6)
7.1.8 Fatigue properties of glass/polyester and glass/epoxy composites
457(11)
7.1.9 Carbon fibre composites
468(3)
7.1.10 Properties of wood laminates
471(2)
7.1.11 Material safety factors
473(1)
7.1.12 Manufacture of composite blades
473(5)
7.1.13 Blade loading overview
478(8)
7.1.14 Simplified fatigue design example
486(9)
7.1.15 Blade resonance
495(5)
7.1.16 Design against buckling
500(6)
7.1.17 Blade root fixings
506(2)
7.1.18 Blade testing
508(1)
7.1.19 Leading edge erosion
509(2)
7.1.20 Bend-twist coupling
511(8)
7.2 Pitch bearings
519(2)
7.3 Rotor hub
521(3)
7.4 Gearbox
524(13)
7.4.1 Introduction
524(1)
7.4.2 Variable loads during operation
525(2)
7.4.3 Drive train dynamics
527(1)
7.4.4 Braking loads
527(1)
7.4.5 Effect of variable loading on fatigue design of gear teeth
528(3)
7.4.6 Effect of variable loading on fatigue design of bearings and shafts
531(1)
7.4.7 Gear arrangements
532(2)
7.4.8 Gearbox noise
534(2)
7.4.9 Integrated gearboxes
536(1)
7.4.10 Lubrication and cooling
536(1)
7.4.11 Gearbox efficiency
537(1)
7.5 Generator
537(11)
7.5.1 Fixed-speed induction generators
537(3)
7.5.2 Variable-slip induction generators
540(1)
7.5.3 Variable-speed operation
541(1)
7.5.4 Variable-speed operation using a DFIG
542(4)
7.5.5 Variable-speed operation using a full power converter
546(2)
7.6 Mechanical brake
548(7)
7.6.1 Brake duty
548(1)
7.6.2 Factors governing brake design
548(2)
7.6.3 Calculation of brake disc temperature rise
550(2)
7.6.4 High-speed shaft brake design
552(2)
7.6.5 Two-level braking
554(1)
7.6.6 Low-speed shaft brake design
554(1)
7.7 Nacelle bedplate
555(1)
7.8 Yaw drive
555(3)
7.9 Tower
558(12)
7.9.1 Introduction
558(1)
7.9.2 Constraints on first mode natural frequency
558(1)
7.9.3 Steel tubular towers
559(10)
7.9.4 Steel lattice towers
569(1)
7.9.5 Hybrid towers
570(1)
7.10 Foundations
570(9)
7.10.1 Slab foundations
570(2)
7.10.2 Multi-pile foundations
572(1)
7.10.3 Concrete monopile foundations
572(1)
7.10.4 Foundations for steel lattice towers
573(1)
7.10.5 Foundation rotational stiffness
574(1)
References
574(5)
8 The Controller
579(58)
8.1 Functions of the wind turbine controller
580(3)
8.1.1 Supervisory control
580(1)
8.1.2 Closed-loop control
581(1)
8.1.3 The safety system
581(2)
8.2 Closed-loop control: issues and objectives
583(6)
8.2.1 Pitch control
583(1)
8.2.2 Stall control
584(1)
8.2.3 Generator torque control
585(1)
8.2.4 Yaw control
585(1)
8.2.5 Influence of the controller on loads
586(1)
8.2.6 Denning controller objectives
587(1)
8.2.7 PI and PID controllers
588(1)
8.3 Closed-loop control: general techniques
589(28)
8.3.1 Control of fixed-speed, pitch-regulated turbines
589(1)
8.3.2 Control of variable-speed, pitch-regulated turbines
590(3)
8.3.3 Pitch control for variable-speed turbines
593(1)
8.3.4 Switching between torque and pitch control
593(2)
8.3.5 Control of tower vibration
595(3)
8.3.6 Control of drive train torsional vibration
598(1)
8.3.7 Variable-speed stall regulation
599(2)
8.3.8 Control of variable-slip turbines
601(1)
8.3.9 Individual pitch control
602(1)
8.3.10 Multivariable control -- decoupling the wind turbine control loops
603(2)
8.3.11 Two axis decoupling for individual pitch control
605(2)
8.3.12 Load reduction with individual pitch control
607(2)
8.3.13 Individual pitch control implementation
609(2)
8.3.14 Further extensions to individual pitch control
611(1)
8.3.15 Commercial use of individual pitch control
611(1)
8.3.16 Estimation of rotor average wind speed
612(1)
8.3.17 LiDAR-assisted control
613(3)
8.3.18 LiDAR signal processing
616(1)
8.4 Closed-loop control: analytical design methods
617(12)
8.4.1 Classical design methods
617(5)
8.4.2 Gain scheduling for pitch controllers
622(1)
8.4.3 Adding more terms to the controller
622(1)
8.4.4 Other extensions to classical controllers
623(2)
8.4.5 Optimal feedback methods
625(3)
8.4.6 Pros and cons of model based control methods
628(1)
8.4.7 Other methods
629(1)
8.5 Pitch actuators
629(2)
8.6 Control system implementation
631(6)
8.6.1 Discretisation
631(1)
8.6.2 Integrator desaturation
632(1)
References
633(4)
9 Wake Effects And Wind Farm Control
637(28)
9.1 Introduction
637(1)
9.2 Wake characteristics
638(14)
9.2.1 Modelling wake effects
639(1)
9.2.2 Wake turbulence in the IEC standard
639(1)
9.2.3 CFD models
640(1)
9.2.4 Simplified or `engineering' wake models
640(11)
9.2.5 Wind farm models
651(1)
9.3 Active wake control methods
652(6)
9.3.1 Wake control options
653(1)
9.3.2 Control objectives
654(2)
9.3.3 Control design methods for active wake control
656(2)
9.3.4 Field testing for active wake control
658(1)
9.4 Wind farm control and the grid system
658(7)
9.4.1 Curtailment and delta control
659(2)
9.4.2 Fast frequency response
661(1)
References
661(4)
10 Onshore Wind Turbine Installations And Wind Farms
665(52)
10.1 Project development
666(12)
10.1.1 Initial site selection
667(3)
10.1.2 Project feasibility assessment
670(1)
10.1.3 Measure-correlate-predict
670(2)
10.1.4 Micrositing
672(1)
10.1.5 Site investigations
672(1)
10.1.6 Public consultation
673(1)
10.1.7 Preparation of the planning application and environmental statement
674(2)
10.1.8 Planning requirements in the UK
676(1)
10.1.9 Procurement of wind farms
676(1)
10.1.10 Financing of wind farms
676(2)
10.2 Landscape and visual impact assessment
678(9)
10.2.1 Landscape character assessment
679(2)
10.2.2 Turbine and wind farm design for minimum visual impact
681(2)
10.2.3 Assessment of visual impact
683(2)
10.2.4 Shadow flicker
685(2)
10.3 Noise
687(11)
10.3.1 Terminology and basic concepts
688(4)
10.3.2 Wind turbine noise
692(1)
10.3.3 Measurement of wind turbine noise
693(2)
10.3.4 Prediction and assessment of wind farm noise
695(2)
10.3.5 Low frequency noise
697(1)
10.4 Electromagnetic interference
698(8)
10.4.1 Impact of wind turbines on communication systems
700(3)
10.4.2 Impact of wind turbines on aviation radar
703(3)
10.5 Ecological assessment
706(11)
10.5.1 Impact on birds
707(3)
10.5.2 Impact on bats
710(2)
References
712(3)
Software
715(2)
11 Wind Energy And The Electric Power System
717(49)
11.1 Introduction
717(4)
11.1.1 The electric power system
718(1)
11.1.2 Electrical distribution networks
719(2)
11.1.3 Electrical transmission systems
721(1)
11.2 Wind turbine electrical systems
721(9)
11.2.1 Wind turbine transformers
722(1)
11.2.2 Protection of wind turbine electrical systems
723(2)
11.2.3 Lightning protection of wind turbines
725(5)
11.3 Wind farm electrical systems
730(5)
11.3.1 Power collection system
730(2)
11.3.2 Earthing (grounding) of wind farms
732(3)
11.4 Connection of wind farms to distribution networks
735(7)
11.4.1 Power system studies
737(1)
11.4.2 Electrical protection of a wind farm
738(3)
11.4.3 Islanding and anti-islanding protection
741(1)
11.4.4 Utility protection of a wind farm
742(1)
11.5 Grid codes and the connection of large wind farms to transmission networks
742(8)
11.5.1 Continuous operation capability
744(1)
11.5.2 Reactive power capability
744(3)
11.5.3 Frequency response
747(1)
11.5.4 Fault ride through
748(1)
11.5.5 Fast fault current injection
748(1)
11.5.6 Synthetic inertia
749(1)
11.6 Wind energy and the generation system
750(6)
11.6.1 Development (planning) of a generation system including wind energy
751(2)
11.6.2 Operation of a generation system including wind energy
753(1)
11.6.3 Wind power forecasting
754(2)
11.7 Power quality
756(10)
11.7.1 Voltage flicker perception
760(2)
11.7.2 Measurement and assessment of power quality characteristics of grid connected wind turbines
762(1)
11.7.3 Harmonics
763(1)
References
764(2)
Appendix A.11 Simple calculations for the connection of wind turbines
766(165)
A11.1 The per-unit system
766(1)
A11.2 Power flows, slow voltage variations, and network losses
767(4)
12 Offshore Wind Turbines And Wind Farms
771(160)
12.1 Offshore wind farms
771(5)
12.2 The offshore wind resource
776(5)
12.2.1 Winds offshore
776(1)
12.2.2 Site wind speed assessment
776(1)
12.2.3 Wakes in offshore wind farms
777(4)
12.3 Design loads
781(41)
12.3.1 International standards
781(1)
12.3.2 Wind conditions
782(2)
12.3.3 Marine conditions
784(1)
12.3.4 Wave spectra
784(1)
12.3.5 Ultimate loads: operational load cases and accompanying wave climates
785(7)
12.3.6 Ultimate loads: non-operational load cases and accompanying wave climates
792(3)
12.3.7 Fatigue loads
795(2)
12.3.8 Wave theories
797(8)
12.3.9 Wave loading on support structure
805(13)
12.3.10 Constrained waves
818(2)
12.3.11 Analysis of support structure loads
820(2)
12.4 Machine size optimisation
822(2)
12.5 Reliability of offshore wind turbines
824(4)
12.5.1 Machine architecture
824(1)
12.5.2 Redundancy
825(1)
12.5.3 Component quality
826(1)
12.5.4 Protection against corrosion
826(1)
12.5.5 Condition monitoring
826(2)
12.6 Fixed support structures -- overview
828(1)
12.7 Fixed support structures
829(54)
12.7.1 Monopiles -- introduction
829(1)
12.7.2 Monopiles -- geotechnical design
830(10)
12.7.3 Monopiles -- steel design
840(5)
12.7.4 Monopiles -- fatigue analysis in the frequency domain
845(15)
12.7.5 Gravity bases
860(6)
12.7.6 Jacket structures
866(9)
12.7.7 Tripod structures
875(2)
12.7.8 Tripile structures
877(1)
12.7.9 S-N curves for fatigue design
877(6)
12.8 Floating support structures
883(25)
12.8.1 Introduction
883(1)
12.8.2 Floater concepts
884(3)
12.8.3 Design standards
887(1)
12.8.4 Design considerations
887(5)
12.8.5 Spar buoy design space
892(1)
12.8.6 Semi-submersible design space
893(5)
12.8.7 Station keeping
898(3)
12.8.8 Spar buoy case study -- Hywind Scotland
901(3)
12.8.9 Three column semi-submersible case study -- WindFloat Atlantic
904(2)
12.8.10 Ring shaped floating platform -- Floatgen, France
906(2)
12.9 Environmental assessment of offshore wind farms
908(5)
12.9.1 Environmental impact assessment
908(1)
12.9.2 Contents of the environmental statement of an offshore wind farm
909(2)
12.9.3 Environmental monitoring of wind farms in operation
911(2)
12.10 Offshore power collection and transmission systems
913(18)
12.10.1 Offshore wind farm transmission systems
914(2)
12.10.2 Submarine AC cable systems
916(4)
12.10.3 HVdc transmission
920(2)
References
922(9)
Appendix A. 12 Costs of electricity
931(2)
A12.1 Levelised cost of electricity
931(1)
A12.2 Strike price and contract for difference
931(2)
Index 933
Tony Burton is a Civil Engineer recently retired from a post in offshore wind turbine support structure design with DNV GL in London, UK. He has worked for a major UK wind turbine manufacturer on the design, construction, commissioning, and operation of both medium and large-scale wind turbines. 

Nick Jenkins is Professor of Renewable Energy at Cardiff University. He has over 14 years of industrial experience and is a Fellow of the IET, IEEE, and Royal Academy of Engineering. 

Ervin Bossanyi is Senior Principal Researcher in renewables at DNV GL in Bristol, United Kingdom. He is also Visiting Professor at the University of Bristol. He received the Scientific Award of the European Academy of Wind Energy for outstanding contributions to the development of wind energy. 

David Sharpe is a Researcher in wind turbine aerodynamics, having previously been Senior Lecturer in aeronautical engineering at Queen Mary College and then Senior Research Fellow at the Centre for Renewable Energy Systems Technology at Loughborough University. He is currently a visiting Professor at Strathclyde University. 

Michael Graham is Professor in the Faculty of Engineering, Department of Aeronautics at Imperial College in London, UK. His research foci are on environmental flows, computational fluid dynamics, and marine technology.