Muutke küpsiste eelistusi

Wireless Communications: From Fundamentals to Beyond 5G 3rd edition [Pehme köide]

(Fellow IEEE, University of Southern California, USA)
  • Formaat: Paperback / softback, 1008 pages, kõrgus x laius x paksus: 244x170x15 mm, kaal: 680 g
  • Sari: IEEE Press
  • Ilmumisaeg: 08-Dec-2022
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119117208
  • ISBN-13: 9781119117209
Teised raamatud teemal:
  • Formaat: Paperback / softback, 1008 pages, kõrgus x laius x paksus: 244x170x15 mm, kaal: 680 g
  • Sari: IEEE Press
  • Ilmumisaeg: 08-Dec-2022
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119117208
  • ISBN-13: 9781119117209
Teised raamatud teemal:
"Wireless communications is one of the most important modern technologies and is interwoven with all aspects of our daily lives. When we wake up, we check social media, email, and news on our smartphones. Before getting up, we adjust the room temperaturethrough a Bluetooth-connected thermostat. After we leave the house and activate the Wi-Fi security cameras, we order a rideshare on a phone app that recognizes our location and are driven to a factory where manufacturing robots are connected and controlled via 5G. And that is only the start of the day.... It is thus no wonder that wireless infrastructure, user devices, and networks are among the largest and most critical industries in most countries. As the demands for wireless services constantly increase, so are the requirements for new products, and for engineers that can develop these products and bring them to market. Such engineers need a deep understanding of both the fundamentals that govern the behavior of wireless systems, the current standardized systems implementations, and more recent research developments that will influence the next generation of products. The goal of this book is to help students, researchers, and practicing engineers to acquire, refresh, or update this knowledge. It is designed to lead them from the fundamental principles and building blocks, such as digital modulation, fading, and reuse of spectrum, to more advanced technologies that underly modern wireless systems, such as multicarrier and multiantenna transmission, toa description of the standardized systems dominating 5G cellular, Wi-Fi, and short-range communications, to the cutting-edge research that will form the basis for beyond-5G systems. In brief, the book leads the reader from the fundamentals to beyond 5G"--

An authoritative and comprehensive treatment of wireless communication technology ranging from the fundamentals to the newest research results

In the expanded and completely revised Third Edition of Wireless Communications, distinguished researcher Dr. Andreas F. Molisch delivers an essential text in wireless communication technology that combines mathematical descriptions with intuitive explanations of the physical facts that enable readers to acquire a deep understanding of the subject.

This latest edition includes brand-new sections on cutting edge research topics such as massive MIMO, polar codes, heterogeneous networks, non-orthogonal multiple access, as well as 5G cellular standards, WiFi 6, and Bluetooth Low Energy. Together with the re-designed descriptions of fundamentals such as fading, OFDM, and multiple access, it provides a thorough treatment of all the technologies that underlie fifth-generation and beyond systems. A complimentary companion website provides readers with a wealth of old and new material, including instructor resources available upon request.

Readers will also find:

  • A thorough introduction to the applications and requirements of modern wireless services, including video streaming, virtual reality, and Internet of Things.
  • Comprehensive explorations of wireless propagation mechanisms and channel models, ranging from Rayleigh fading to advanced models for MIMO communications.
  • Detailed discussions of single-user communications fundamentals, including modern coding techniques, multi-carrier communications, and single-user MIMO.
  • Extensive description of multi-user communications, including packet radio systems, CDMA, scheduling, admission control, cellular and ad-hoc network design, and multi-user MIMO.
  • In-depth examinations of advanced topics in wireless communication, like speech and video coding, cognitive radio, NOMA, network coding, and wireless localization.
  • A comprehensive description of the key wireless standards, including LTE, 5G, WiFi, Bluetooth, and an outlook to Beyond 5G systems.

Perfect for advanced undergraduate and graduate students with a basic knowledge of standard communications, Wireless Communications will also earn a place in the libraries of researchers and system designers seeking a one-stop resource on wireless communication technology.

Arvustused

"this text is an essential resource for anyone looking to deepen their knowledge or enter the field of wireless communications" Bo Rong, Rupendra Nath Mitra IEEE Wireless Communications June 2024

Preface to the Third, Expanded and Completely Revised, Edition: From the Fundamentals to Beyond 5G xxv
Preface and Acknowledgements to the Second Edition xxix
Preface and Acknowledgements to the First Edition xxx
List of Abbreviations
xxxiii
List of Symbols
xxxv
About the Companion Website xxxvii
Part I Introduction
1(46)
1 Applications and Requirements of Wireless Services
3(16)
1.1 History
3(4)
1.1.1 How It All Started
3(1)
1.1.2 The First Systems
4(1)
1.1.3 Analog Cellular Systems
4(1)
1.1.4 GSM and the Worldwide Cellular Revolution
5(1)
1.1.5 New Wireless Systems and the Burst of the Bubble
5(1)
1.1.6 Wireless Revival
6(1)
1.1.7 The Smartphone Revolution and the Internet of Thing
6(1)
1.2 Types of Services
7(5)
1.2.1 Cellular Telephony
7(1)
1.2.2 Satellite and UAV Cellular Communications
8(1)
1.2.3 Trunking Radio
8(1)
1.2.4 Wireless LANs and Cordless Telephony
9(1)
1.2.5 Personal Area Networks
10(1)
1.2.6 Fixed Wireless Access
10(1)
1.2.7 Broadcast
11(1)
1.2.8 Ad Hoc Networks
11(1)
1.2.9 Internet of Things and Sensor Networks
12(1)
1.3 Requirements for the Services
12(5)
1.3.1 Data Rate
12(1)
1.3.2 Range and Number of Users
13(1)
1.3.3 Mobility
13(2)
1.3.4 Energy Consumption
15(1)
1.3.5 Use of Spectrum
15(1)
1.3.6 Direction of Transmission
16(1)
1.3.7 Service Quality
16(1)
1.4 Economic and Social Aspects
17(2)
1.4.1 Economic Requirements for Building Wireless Communications Systems
17(1)
1.4.2 The Market for Wireless Communications
17(1)
1.4.3 Behavioral Impact
18(1)
Exercises: Sec. 36.1 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
18(1)
2 Technical Challenges of Wireless Communications
19(8)
2.1 Broadcast Effect
19(1)
2.2 Multi-path Propagation
19(4)
2.2.1 Fading
21(1)
2.2.2 Intersymbol Interference
22(1)
2.3 Spectrum Limitations
23(2)
2.3.1 Assigned Frequencies
23(2)
2.3.2 Frequency Reuse in Regulated Spectrum
25(1)
2.3.3 Frequency Reuse in Unregulated Spectrum
25(1)
2.4 Limited Energy
25(1)
2.5 User Mobility
26(1)
Exercises: Sec. 36.2 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
26(1)
3 Wireless System Design Overview
27(20)
3.1 Noise-limited Systems and Link Budgets
27(7)
3.1.1 Link Budget Assumptions
27(1)
3.1.2 Noise Power, Path Gain, and Antenna Gain
27(3)
3.1.3 Link Budget
30(3)
3.1.4 More on Channels and Antennas
33(1)
3.2 Digital Modulation and Receiver Signal Processing
34(5)
3.2.1 Systems Without Signal Distortion
34(2)
3.2.2 Systems with Signal Distortion
36(2)
3.2.3 Systems with Multiple Antennas
38(1)
3.3 Multi-user Systems
39(5)
3.3.1 Separation of Users in a Cell
39(3)
3.3.2 Interference limited Systems
42(2)
3.4 Summary
44(3)
Exercises: Sec. 36.3 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
45(2)
Part II Wireless Propagation Channels
47(156)
4 Propagation Mechanisms
49(24)
4.1 Free Space Attenuation
49(3)
4.2 Reflection and Transmission
52(5)
4.2.1 Snell's Law
52(2)
*4.2.2 Reflection and Transmission for Layered Dielectric Structures
54(2)
4.2.3 The d-4 Power Law
56(1)
4.3 Diffraction
57(7)
4.3.1 Diffraction by a Single Screen or Wedge
57(4)
*4.3.2 Diffraction by Multiple Screens
61(3)
4.4 Scattering by Rough Surfaces
64(2)
4.4.1 The Kirchhoff Theory
65(1)
*4.4.2 Perturbation Theory
65(1)
*4.4.3 Directional Characteristics of the Diffuse Radiation
66(1)
4.5 Waveguiding
66(1)
*4.6 Atmospheric Absorption
67(1)
4.7 Deterministic Channel Modeling
67(4)
4.7.1 Ray Launching
68(1)
4.7.2 Ray Tracing
69(1)
*4.7.3 Geographical Databases
69(1)
*4.7.4 Achievable Accuracy
70(1)
*4.7.5 Machine Learning for Coverage Prediction
70(1)
*4.8 Appendices: App4.pdf at www.wiley.com/go/molisch/wireless3e
71(2)
App. 4.A Derivation of the d-4 Law
71(1)
App. 4.B Diffraction Coefficients for Diffraction by a Wedge or Cylinder
71(1)
Further Reading
71(1)
Exercises: Sec. 36.4 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
71(2)
5 Statistical Description of the Wireless Channel
73(28)
5.1 Introduction
73(1)
5.2 The Time-Invariant Two-Path Model
74(2)
5.3 The Time-Variant Two-Path Model
76(1)
5.4 Small-Scale Fading Without a Dominant Component
77(8)
5.4.1 A Computer Experiment
78(3)
5.4.2 Mathematical Derivation of the Statistics of Amplitude and Phase
81(1)
5.4.3 Properties of the Rayleigh Distribution
82(2)
5.4.4 Fading Margin for Rayleigh-Fading
84(1)
5.5 Small-Scale Fading with a Dominant Component
85(4)
5.5.1 A Computer Experiment
85(1)
5.5.2 Derivation of the Amplitude and Phase Distribution
86(2)
*5.5.3 Nakagami Distribution
88(1)
5.6 Doppler Spectra and Statistics of Temporal Channel Variations
89(3)
5.6.1 Temporal Variations for Moving UE
89(3)
5.6.2 Temporal Variations in Fixed and Nomadic Wireless Systems
92(1)
5.6.3 Generation of Fading
92(1)
*5.7 Temporal Fading Characterization
92(3)
5.7.1 Level Crossing Rate
92(1)
5.7.2 Average Duration of Fades
93(1)
5.7.3 Random Frequency Modulation
94(1)
5.8 Large-Scale Fading
95(4)
5.8.1 Large-Scale Fading Distribution
95(1)
*5.8.2 Joint Small-Scale and Large-Scale Fading
96(3)
*5.9 Appendices: App5.pdf at www.wiley.com/go/molisch/wireless3e
99(2)
App. 5.A The Central Limit Theorem
99(1)
App. 5.B Derivation of the Rayleigh Distribution
99(1)
App. 5.C Derivation of the Level Crossing Rate
99(1)
Further Reading
99(1)
Exercises: Sec. 36.5 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
99(2)
6 Wideband and Directional Channel Characterization
101(22)
6.1 Introduction
101(1)
6.2 The Causes of Delay Dispersion
102(3)
6.2.1 The Two-Path Model
102(1)
6.2.2 The General Case
103(2)
6.3 System-Theoretic Description of Wireless Channels
105(3)
6.3.1 Characterization of Deterministic Linear Time-Variant Systems
105(1)
6.3.2 Stochastic System Functions
106(2)
6.4 The WSSUS Model
108(2)
6.4.1 Wide-Sense Stationarity
108(1)
6.4.2 Uncorrelated Scatterers
108(1)
6.4.3 WSSUS Assumption
109(1)
6.4.4 Tapped Delay Line Models
109(1)
6.4.5 Interpretation and Limits of the WSSUS Assumption
110(1)
6.5 Condensed Parameters
110(5)
6.5.1 Integrals of the Correlation Functions
111(1)
6.5.2 Moments of the Power Delay Profile
111(1)
6.5.3 Moments of the Doppler Spectra
112(1)
6.5.4 Coherence Bandwidth and Coherence Time
112(2)
*6.5.5 Window Parameters
114(1)
*6.6 Ultra Wideband Channels
115(2)
6.6.1 UWB Signals with Large Relative Bandwidth
115(1)
6.6.2 UWB Channels with Large Absolute Bandwidth
116(1)
6.7 Directional Description
117(4)
6.7.1 Basic Double-Directional Impulse Response
117(1)
*6.7.2 Generalizations of the Double-Directional Impulse Response
117(1)
6.7.3 Stochastic Channel Description and Condensed Parameters
118(2)
6.7.4 Connection to Conventional Impulse Response
120(1)
*6.7.5 Direction-Dependent Condensed Parameters
121(1)
*6.8 Appendices: App6.pdf at www.wiley.com/go/molisch/wireless3e
121(2)
App. 6A Validity of WSSUS in Mobile Radio
121(1)
App. 6B Instantaneous Channel Parameters
121(1)
Further Reading
121(1)
Exercises: Sec. 36.6 Of Exercises.pdf at www.wley.com/go/molisch/wireless3e
122(1)
7 Channel Models
123(30)
7.1 Narrowband Models
123(9)
7.1.1 Definitions for Pathloss and Shadowing
123(2)
7.1.2 The Power-Distance Law
125(1)
7.1.3 Breakpoint Models
126(1)
7.1.4 Impact of Frequency, Transceiver Height, and Environment
127(1)
*7.1.5 Power Laws with Random Parameters
128(1)
7.1.6 LOS Probability and Composite Models
129(1)
7.1.7 Shadowing
130(1)
7.1.8 Small-Scale Fading
131(1)
7.2 Delay Dispersion Models
132(3)
7.2.1 Tapped Delay Line
132(1)
7.2.2 Clustered Models
133(1)
7.2.3 The Saleh--Valenzuela Model
133(1)
*7.2.4 Standardized Models
134(1)
7.2.5 Typical Values for Delay Dispersion
134(1)
7.3 Angular Dispersion
135(1)
7.3.1 Angular Dispersion at the BS
135(1)
7.3.2 Angular Dispersion at the UE
135(1)
7.4 Joint Dispersion Characteristics and Clustering
136(4)
7.4.1 General Model Structure and Factorization
136(1)
7.4.2 Clustering
137(1)
*7.4.3 Physical Propagation Effects Impacting Clustering
137(2)
7.4.4 Cluster Parameter Correlation
139(1)
*7.4.5 Modeling Hierarchies
140(1)
7.5 Generalized Tapped-Delay Line Models
140(3)
7.5.1 Fundamental Considerations
140(1)
*7.5.2 The 3GPP Model
140(1)
7.5.3 MIMO Matrix Models
141(1)
*7.5.4 Diffuse Multi-Path
141(1)
*7.5.5 Polarization
142(1)
7.6 Geometry-Based Stochastic Channel Models
143(3)
7.6.1 General Principle
143(1)
7.6.2 10 Distributions
143(1)
*7.6.3 Multi-Bounce Modeling
144(1)
7.6.4 Modeling of Large-Scale Movement
144(1)
*7.6.5 Multi-Link Models
145(1)
*7.6.6 COST 259/273/2100 Models
146(1)
7.7 Semi-Deterministic Models
146(2)
7.8 Blockage
148(1)
7.8.1 Static Human Blockage
148(1)
7.8.2 Dynamic Blockage
148(1)
*7.9 Special Models
148(3)
7.9.1 D2D and V2V Models
148(1)
7.9.2 Drone-to-Ground Channels
149(1)
7.9.3 Mm-wave and THz Channels
150(1)
7.9.4 Body Area Network Channels
151(1)
*7.10 Appendices: App7.pdf at www.wiley.com/go/molisch/wireless3e
151(2)
App. 7.A The Okumura-Hata Model
151(1)
App. 7.B The COST 231-Walfish-Ikegami Model
151(1)
App. 7.C The COST 207 GSM Model
151(1)
App. 7.D The 3GPP Spatial Channel Model
151(1)
App. 7.E The 802.15.4a UWB Channel Model
151(1)
App. 7.F The COST 259/273/2100 Channel Model
152(1)
Further Reading
152(1)
Exercises: Sec. 36.7 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
152(1)
8 Antennas
153(30)
8.1 Introduction and Brief Characterization
153(4)
8.1.1 Antennas as Part of a Wireless System
153(1)
8.1.2 Why Do Antennas Radiate
153(1)
*8.1.3 The Hertzian Dipole
153(3)
*8.1.4 Field Regions
156(1)
8.2 Characterization of Antennas
157(8)
8.2.1 Antenna Pattern, Directivity, and Beamwidth
157(2)
8.2.2 Equivalent Circuits, Antenna Efficiency, and Matching
159(3)
8.2.3 Bandwidth
162(1)
8.2.4 Polarization and Complex Antenna Patterns
162(3)
8.3 Popular Antenna Types
165(8)
8.3.1 Monopole-and Dipole Antennas
165(1)
*8.3.2 Helical Antennas
166(1)
8.3.3 Mkrostrip Antennas
167(1)
8.3.4 PIFA-Antennas
168(1)
8.3.5 Multi-Band Antennas
169(1)
8.3.6 Horn Antennas
169(1)
8.3.7 Reflector Antennas, Yagi-Uda Antennas, and Switched Parasitic Antennas
170(1)
8.3.8 Lens Antennas
171(1)
*8.3.9 On-Chip Antennas
172(1)
8.4 Antenna Arrays
173(4)
8.4.1 Data Model for Array
173(2)
8.4.2 Beam Pattern of Array Antennas
175(2)
*8.4.3 Mutual Coupling
177(1)
8.5 Special Aspects of Antennas for BS and UE
177(6)
8.5.1 Antenna Mounting on the UE
177(1)
8.5.2 Effects of Objects in the Near-Field of the UE
178(1)
8.5.3 BS Antenna Types
178(2)
*8.5.4 Effect of Objects in the BS Near-Field
180(1)
Further Reading
181(1)
Exercises: Sec. 36.8 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
181(2)
9 Channel Sounding
183(20)
9.1 Introduction
183(3)
9.1.1 Requirements for Channel Sounding
183(1)
9.1.2 Generic Sounder Structure
183(1)
*9.1.3 Identifiability of Wireless Channels
184(2)
9.1.4 Influence on Measurement Data
186(1)
9.2 Time-Domain Measurements
186(2)
9.2.1 Impulse Sounder
187(1)
9.2.2 Correlative Sounders
187(1)
9.3 Frequency Domain Analysis
188(2)
9.3.1 Frequency Stepping and Vector Network Analyzers
188(1)
9.3.2 Chirping
189(1)
9.3.3 Multi-Tone Sounding
189(1)
*9.4 Modified Measurement Methods
190(2)
9.4.1 Swept Time Delay Cross Correlator (STDCC)
190(1)
9.4.2 Inverse Filtering
190(1)
9.4.3 Averaging
191(1)
9.4.4 Synchronization
192(1)
9.4.5 Calibration
192(1)
9.5 Directionally Resolved Measurements
192(9)
9.5.1 Data Acquisition
192(2)
9.5.2 Beamforming
194(1)
*9.5.3 High-Resolution Algorithms -- General Aspects
195(1)
*9.5.4 Minimum Variance Method -- Capon's Beamformer
195(2)
*9.5.5 High-Resolution Parameter Estimation -- General Model
197(1)
*9.5.6 Serial Interference Cancellation -- The CLEAN Algorithm
197(1)
*9.5.7 Iterative Maximum-Likelihood Estimation -- SAGE Algorithm
198(2)
*9.5.8 Multiple Input Multiple Output Measurements
200(1)
*9.6 Appendices: App9.pdf at www.wiley.com/go/molisch/wireless3e
201(2)
App. 9.A The ESPRIT Algorithm
201(1)
App. 9.B Guidelines for Evaluation of Channel Measurements
201(1)
Further Reading
201(1)
Exercises: Sec. 36.9 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
201(2)
Part III Wireless Communication Over a Single Link
203(258)
10 Modulation Formats
205(30)
10.1 Introduction
205(4)
10.1.1 Basic Principles
205(1)
10.1.2 Goals and Evaluation Criteria
205(1)
10.1.3 Baseband--Passband
206(1)
10.1.4 General Aspects of Bandwidth
207(1)
10.1.5 Signal-Space Diagram
207(2)
10.2 Pulse Amplitude Modulation
209(3)
10.2.1 General Formulation
209(1)
10.2.2 Spectrum
209(3)
10.3 Widely Used PAM Modulation Formats
212(11)
10.3.1 Binary Phase-Shift Keying (BPSK)
213(1)
10.3.2 Quadrature Phase-Shift Keying (QPSK)
214(3)
10.3.3 Higher-Order QAM
217(1)
10.3.4 Higher-Order Phase Modulation
218(1)
10.3.5 Differential BPSK
219(1)
*10.3.6 Π/4-Dijferential QPSK
219(1)
*10.3.7 Offset-QPSK
220(3)
10.3.8 On-Off Keying (OOK)
223(1)
10.4 Multi-Pulse Modulation
223(10)
10.4.1 Multi-Pulse Modulation
223(1)
10.4.2 Frequency Shift Keying
223(2)
10.4.3 Continuous-Phase Modulation
225(2)
*10.4.4 Minimum Shift Keying
227(2)
*10.4.5 Demodulation of MSK
229(1)
*10.4.6 Gaussian MSK
230(1)
*10.4.7 Pulse Position Modulation
231(2)
10.5 Summary of Spectral Efficiencies
233(1)
*10.6 Appendix: App10.pdf at www.wiley.com/go/molisch/wireless3e
233(2)
App. 10.A Interpretation of MSK as OQPSK
233(1)
Further Reading
233(1)
Exercises: Sec. 36.10 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
233(2)
11 Demodulation
235(24)
11.1 Demodulator Structure and Error Probability in Additive White Gaussian Noise Channels
235(9)
11.1.1 Model for Channel and Noise
235(1)
11.1.2 Signal Space Diagram and Optimum Receivers
236(3)
11.1.3 Methods for the Computation of Error Probability
239(5)
11.2 Error Probability in Flat-Fading Channels
244(6)
11.2.1 Average Error Probability -- Classical Computation Method
244(2)
*11.2.2 Average Error Probability -- Moment-Generating Function Method
246(3)
11.2.3 Outage Probability versus Average Error Probability
249(1)
11.3 Error Probability in Delay- and Frequency-Dispersive Fading Channels
250(9)
11.3.1 Physical Cause of Error Floors
250(4)
*11.3.2 Computation of the Error Floor Using the Group Delay Method
254(1)
*11.3.3 General Fading Channels: The Quadratic Form Gaussian Variable Method
255(2)
Further Reading
257(1)
Exercises: Sec. 36.11 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
257(2)
12 Diversity
259(20)
12.1 Introduction
259(1)
12.1.1 Principle of Diversity
259(1)
12.1.2 Definition of the Correlation Coefficient
260(1)
12.2 Microdiversity
260(6)
12.2.1 Spatial Diversity
261(2)
12.2.2 Temporal Diversity
263(1)
12.2.3 Frequency Diversity
264(1)
12.2.4 Angular Diversity
265(1)
12.2.5 Polarization Diversity
265(1)
12.3 Macrodiversity and Simulcast
266(1)
12.4 Combination of Signals
267(6)
12.4.1 Selection Diversity
267(2)
*12.4.2 Switched Diversity
269(1)
12.4.3 Combining Diversity
269(4)
12.5 Error Probability in Fading Channels with Diversity Reception
273(6)
12.5.1 Error Probability in Flat-Fading Channels
274(1)
*12.5.2 Error Probability in Frequency-Selective Fading Channels
275(2)
*12.6 Appendix: App12.pdf at www.wiley.com/go/molisch/wireless3e
277(1)
App. 12.A Correlation Coefficient of Two Signals with Frequency Separation
277(1)
Further Reading
277(1)
Exercises: Sec. 36.12 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
278(1)
13 Channel Coding and Information Theory
279(44)
13.1 Fundamentals of Coding and Information Theory
279(5)
13.1.1 History and Motivation of Coding
279(1)
13.1.2 Fundamental Concepts of Information Theory
279(2)
13.1.3 Channel Capacity
281(1)
13.1.4 Power--Bandwidth Relationship
282(1)
13.1.5 Impact of Code Length
283(1)
13.1.6 Classification of Practical Codes
283(1)
13.2 Block Codes
284(4)
13.2.1 Introduction
284(1)
13.2.2 Encoding
285(1)
13.2.3 Decoding
286(1)
13.2.4 Recognition and Correction of Errors
287(1)
13.2.5 Concatenated Codes
288(1)
13.3 Convolutional Codes
288(9)
13.3.1 Principle of Convolutional Codes
288(1)
13.3.2 Viterbi Decoder -- Classical Representation
289(2)
*13.3.3 Improvements of the Viterbi Algorithm
291(2)
*13.3.4 The BCJR Algorithm
293(4)
*13.4 Trellis Coded Modulation
297(4)
13.4.1 Basic Principle
297(2)
13.4.2 Set Partitioning
299(2)
13.5 Bit Interleaved Coded Modulation (BICM)
301(1)
*13.6 Turbo Codes
302(4)
13.6.1 Introduction
302(1)
13.6.2 Encoder
302(1)
13.6.3 Turbo Decoder
303(3)
*13.7 Low-Density Parity-Check Codes
306(4)
13.7.1 Definition of Low-Density Parity-Check Codes
306(1)
13.7.2 Encoding of Low-Density Parity-Check Codes
307(1)
13.7.3 Decoding of Low-Density Parity-Check Codes
307(3)
13.7.4 Performance Improvements
310(1)
*13.8 Polar Codes
310(4)
13.8.1 Introduction
310(1)
13.8.2 Code Construction and Encoding Process
310(2)
13.8.3 Decoding
312(2)
*13.9 Comparison of Capacity-Approaching Codes
314(1)
13.10 Coding for the Fading Channel
315(3)
13.10.1 Interleaving
315(2)
13.10.2 Block Codes and Convolutional Codes
317(1)
13.10.3 Concatenated Codes
318(1)
*13.10.4 Trellis Coded Modulation in Fading Channels
318(1)
13.11 Information-Theoretic Performance Limits of Fading Channels
318(2)
13.11.1 Ergodic Capacity vs. Outage Capacity
318(1)
13.11.2 Capacity for Channel State Information at the Receiver (CSIR) Only
319(1)
13.11.3 Capacity for CSIT and CSIR -- Waterfilling
320(1)
13.12 Automatic Repeat Request
320(3)
Further Reading
321(1)
Exercises: Sec. 36.13 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
322(1)
14 Equalizers
323(16)
14.1 Introduction
323(3)
14.1.1 Equalization in the Time Domain and Frequency Domain
323(1)
14.1.2 Modeling of Channel and Equalizer
324(1)
14.1.3 Channel Estimation
325(1)
14.2 Linear Equalizers
326(5)
14.2.1 Zero-Forcing Equalizer
327(1)
14.2.2 The Mean Square Error Criterion
327(2)
*14.2.3 Adaptation Algorithms for Mean Square Error Equalizers
329(1)
*14.2.4 Further Linear Structures
330(1)
14.3 Decision Feedback Equalizers
331(2)
14.3.1 MMSE Decision Feedback Equalizer
332(1)
14.3.2 Zero-Forcing Decision Feedback Equalizer
332(1)
14.4 Maximum Likelihood Sequence Estimation -- Viterbi Detector
333(2)
14.5 Comparison of Equalizer Structures
335(1)
*14.6 Fractionally Spaced Equalizers
335(1)
*14.7 Blind Equalizers
335(2)
14.7.1 Introduction
335(1)
14.7.2 Constant Modulus Algorithm
336(1)
14.7.3 Blind Maximum Likelihood Estimation
336(1)
14.7.4 Algorithms Using Second-or Higher-Order Statistics
337(1)
14.7.5 Assessment
337(1)
14.7.6 Joint Equalization and Detection
337(1)
14.8 Predistortion at the Transmitter
337(1)
*14.9 Appendices: App14.pdf at www.wiley.com/go/molisch/wireless3e
338(1)
App. 14.A Equivalence of Peak Distortion and Zero-Forcing Criterion
338(1)
App. 14.B Derivation of the Mean-Square Error Criterion
338(1)
App. 14.C The Recursive Least Squares Algorithm
338(1)
Further Reading
338(1)
Exercises: Sec. 36.14 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
338(1)
15 Orthogonal Frequency Division Multiplexing (OFDM)
339(36)
15.1 Introduction
339(1)
15.2 Principle of Orthogonal Frequency Division Multiplexing
339(1)
15.3 Implementation of Transceivers
340(1)
15.4 Frequency-Selective Channels
341(4)
15.4.1 Cyclic Prefix
342(1)
15.4.2 Performance in Frequency-Selective Channels
343(2)
15.4.3 Coded Orthogonal Frequency Division Multiplexing
345(1)
15.5 Channel Estimation
345(5)
15.5.1 Single-Shot Estimation with Pilot Symbol
346(2)
15.5.2 Estimation in Time-Variant Channels
348(2)
*15.5.3 Joint Channel Estimation and Data Detection
350(1)
15.6 Peak-to-Average Power Ratio
350(2)
15.6.1 Origin of the Peak-to-Average Power Ratio Problem
350(1)
*15.6.2 Peak-to-Average Ratio Reduction Techniques
351(1)
15.7 Inter Carrier Interference
352(3)
*15.8 Synchronization
355(4)
15.8.1 Timing Synchronization
355(2)
15.8.2 Frequency Synchronization
357(1)
15.8.3 Uplink Synchronization
358(1)
15.9 Adaptive Power Allocation, Modulation, and Coding
359(3)
15.9.1 Channel Quality Estimation
359(1)
15.9.2 Power Adaptation
359(2)
15.9.3 Adaptive Modulation and Coding
361(1)
*15.10 Generalizations of OFDM
362(6)
15.10.1 General Framework -- Gabor Systems
362(1)
15.10.2 Filters (Pulses)
363(1)
15.10.3 Lattices
364(1)
15.10.4 Dichotomy of Multi-Carrier Schemes
364(2)
15.10.5 Filtered Multitone (FMT) and UFMC
366(1)
15.10.6 Generalized FDM
366(1)
15.10.7 Staggered Multitone -- FBMC/OQAM
367(1)
*15.11 Multi-Carrier Spread Spectrum
368(3)
15.11.1 MC-CDMA
368(2)
15.11.2 DFT-Spread OFDM
370(1)
*15.12 Orthogonal Time Frequency Spreading (OTFS)
371(4)
15.12.1 Introduction
371(1)
15.12.2 Mathematical Description
371(2)
15.12.3 Implementation as Overlay
373(1)
15.12.4 Diversity and Channel Gain
373(1)
Further Reading
374(1)
Exercises: Sec. 36.15 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
374(1)
16 Multiple Antenna Systems -- SIMO, MISO, and MIMO
375(56)
16.1 Diversity and Beamforming
375(20)
16.1.1 Motivation
375(1)
16.1.2 System Model
376(3)
16.1.3 Hardware Structures for SIMO and MISO
379(3)
16.1.4 Algorithms for SIMO
382(4)
16.1.5 Algorithms for MISO
386(2)
16.1.6 Diversity and Beamforming in MIMO Systems
388(1)
16.1.7 CSIT in TDD and FDD Systems
389(6)
16.2 Spatial Multiplexing
395(36)
16.2.1 Introduction
395(1)
16.2.2 How does Spatial Multiplexing Work?
396(1)
16.2.3 Capacity in Nonfading Channels
397(3)
*16.2.4 Capacity in Flat-Fading Channels
400(2)
16.2.5 Capacity Distributions in Flat-Fading Channels
402(1)
16.2.6 Impact of the Channel
403(6)
*16.2.7 Channel Estimation
409(1)
16.2.8 Feedback for Spatial Multiplexing
410(1)
16.2.9 Receiver Structures
410(6)
16.2.10 Antenna Selection and Hybrid Beamforming
416(3)
*16.2.11 MIMO Systems with Low-Resolution ADCs
419(2)
*16.2.12 Space Time Coding for MIMO
421(2)
*16.2.13 Spatial Modulation
423(2)
*16.2.14 Intelligent Reflective Surfaces
425(1)
*16.2.15 Orbital Angular Momenta
426(4)
Further Reading
430(1)
Exercises: Sec. 36.16 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
430(1)
17 Hardware Aspects
431(30)
17.1 Introduction
431(3)
17.1.1 Motivation
431(1)
17.1.2 Structure of RF Transceivers
431(3)
17.2 General Concepts
434(4)
17.2.1 Noise
434(1)
17.2.2 Linearity and Dynamic Range
435(2)
17.2.3 Matching
437(1)
*17.3 ADCs and DACs
438(2)
17.3.1 ADC
438(2)
17.3.2 DAC
440(1)
*17.4 Amplifiers
440(4)
17.4.1 General Considerations
440(1)
17.4.2 Power Amplifiers
441(1)
17.4.3 Gain Control
442(1)
17.4.4 Amplifier Matching
443(1)
*17.5 Filters, Power Dividers, and Phase Shifters
444(3)
17.5.1 Principles and Characteristics of Filters
444(1)
17.5.2 Switches and Phase Shifters
445(1)
17.5.3 Power Dividers, Circulators, and Directional Couplers
446(1)
*17.6 Oscillators
447(6)
17.6.1 Feedback Oscillators
448(1)
17.6.2 Resonators for Oscillators
449(1)
17.6.3 PLL
449(2)
17.6.4 Phase Noise
451(2)
*17.7 Mixers and Frequency Conversion
453(1)
17.8 Transceiver Structures
453(3)
17.8.1 Up/Downconversion
453(1)
17.8.2 Image Rejection and Multistage Conversion
454(2)
17.8.3 Sampling and Digitization
456(1)
17.9 Spectrum Masks
456(1)
*17.10 Full Duplex
457(2)
*17.11 Appendices: App17.pdf at www.wiley.com/go/molisch/wireless3e
459(2)
App. 17.A Two-port Network and S-parameters
459(1)
App. 17.B Matching
459(1)
Further Reading
459(1)
Exercises: Sec. 36.22 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
459(2)
Part IV Wireless Communication with Multiple Users
461(174)
18 Multiple Access
463(20)
18.1 Introduction
463(1)
*18.2 Performance Limits for Multiple Access
464(3)
18.2.1 Downlink
464(2)
18.2.2 Uplink
466(1)
18.3 Contention-Free Multiple Access
467(4)
18.3.1 Frequency Division Multiple Access (FDMA)
467(1)
18.3.2 Time Division Multiple Access (TDMA)
468(2)
18.3.3 OFDMA
470(1)
18.4 Contention Multiple Access
471(8)
18.4.1 ALOHA
472(1)
18.4.2 Carrier Sense Multiple Access (CSMA)
473(1)
*18.4.3 Conflict Resolution Algorithms -- Random Backoff
474(2)
*18.4.4 Conflict Resolution Algorithms -- Splitting Algorithms
476(1)
*18.4.5 Multi-Channel Transmission
477(1)
*18.4.6 Reservation Mechanisms
478(1)
18.4.7 Comparison of the Methods
479(1)
18.5 Duplexing
479(2)
18.5.1 FDD and TDD
479(1)
18.5.2 Full-Duplex Systems
480(1)
18.6 Broadcast and Multi-Cast
481(2)
Further Reading
481(1)
Exercises: Sec. 36.18 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
481(2)
19 Spread Spectrum Systems
483(18)
19.1 Frequency Hopping Multiple Access (FHMA)
483(2)
19.1.1 Principle of Frequency Hopping -- Single User Case
483(1)
19.1.2 Frequency Hopping for Multiple Access (FHMA)
484(1)
19.2 Direct Sequence Spread Spectrum -- Single-User Case
485(5)
19.2.1 Basic Principle
485(2)
*19.2.2 Error Probability and SINR
487(1)
19.2.3 Effects of Multi-Path Propagation
487(3)
*19.2.4 Synchronization
490(1)
19.3 Code-Division-Multiple-Access Systems
490(6)
19.3.1 Principle of Code Division Multiple Access
490(2)
19.3.2 Spreading Codes for Multiple Access
492(3)
19.3.3 Power Control
495(1)
*19.3.4 Methods for Capacity Increases
496(1)
*19.3.5 Combination with Other Multi-Access Methods
496(1)
*19.4 Time Hopping Impulse Radio
496(5)
19.4.1 Simple Impulse Radio
496(1)
19.4.2 Time Hopping
497(1)
19.4.3 Impulse Radio in Delay-Dispersive Channels
498(1)
Further Reading
499(1)
Exercises: Sec. 36.19 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
500(1)
20 Resource Allocation: Scheduling, Power Control, and Admission Control
501(26)
20.1 Rate and Latency Requirements for Different Kinds of Traffic
501(4)
20.1.1 Speech Video, and Data
501(1)
20.1.2 Traffic Characteristics
502(1)
20.1.3 Optimization Goals
503(1)
20.1.4 Network Utility Function
504(1)
20.1.5 Power Control
505(1)
20.2 Dichotomy of Resource Allocation
505(1)
20.3 Resource Allocation in OFDMA with Infinite Backlog
506(6)
20.3.1 Network Utility Maximization in Nonselective Channels
506(2)
20.3.2 Network Utility Maximization in Selective Channels
508(3)
20.3.3 Network Utility Maximization with Power Control
511(1)
*20.4 Resource Allocation in CDMA with Infinite Backlog
512(1)
*20.5 Scheduling with Random Data Arrivals
513(5)
20.5.1 Queue Definitions
513(1)
20.5.2 Rate Stability and Stationary Randomized Policies
514(1)
20.5.3 Dynamic Scheduling
515(3)
20.5.4 Scheduling of Short Files
518(1)
20.6 Multi-Channel Systems and Admission Control
518(6)
20.6.1 System Model for Speech Communications
519(1)
20.6.2 Call Blocking -- The Erlang B Model
519(3)
20.6.3 Call Waiting -- The Erlang C Model
522(1)
20.6.4 Applications to Data Transmission
523(1)
20.6.5 Admission Control
524(1)
20.7 Machine Learning for Resource Allocation
524(3)
Further Reading
525(1)
Exercises: Sec. 36.20 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
525(2)
21 Principles of Cellular Networks
527(30)
21.1 Frequency Reuse
527(1)
21.2 Cell Planning with Symmetric BS Deployment
528(5)
21.2.1 Cell Planning with Hexagonal Cells
528(2)
*21.2.2 Spectral Efficiency for the Downlink
530(2)
*21.2.3 Spectral Efficiency for the Uplink
532(1)
*21.2.4 Considerations for TDD Systems
533(1)
21.3 Inter-Cell Interference Reduction
533(6)
21.3.1 Taxonomy of Inter-Cell Interference Reduction Techniques
533(1)
21.3.2 Fractional Frequency Reuse (FFR)
534(2)
21.3.3 Cell Breathing and BS Sleeping
536(1)
21.3.4 Dynamic Inter-Cell Interference Coordination (ICIC)
536(3)
21.4 Cell Planning with Irregular Deployment
539(8)
21.4.1 Motivations for Irregular Deployment
539(1)
*21.4.2 Random Point Processes
539(3)
*21.4.3 Received Signal Power from a Homogeneous PPP
542(2)
*21.4.4 Performance in Random Deployment -- Downlink
544(1)
*21.4.5 Performance in Random Deployment -- Uplink
545(2)
21.5 CDMA-Based Cellular Systems
547(2)
21.5.1 Uplink
547(1)
21.5.2 Downlink
548(1)
21.6 Handover
549(1)
21.6.1 Hard Handover
549(1)
21.6.2 Soft Handover
550(1)
21.7 Heterogeneous Networks
550(5)
21.7.1 Motivation for Heterogeneous Networks
550(1)
21.7.2 Types of Heterogeneous Networks
551(1)
21.7.3 Interference and Cell Association
552(2)
21.7.4 Self-Organizing Networks
554(1)
21.7.5 Economic Aspects of Femtocells
554(1)
21.8 Backhaul
555(1)
21.9 Other Methods for Increasing Capacity
555(2)
Further Reading
556(1)
Exercises: Sec. 36.21 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
556(1)
22 Multiple Antennas for Multi-User Systems -- MU-MIMO, Massive MIMO, and CoMP
557(48)
22.1 Introduction and Intuition
557(2)
22.2 System Model
559(3)
22.3 Performance Limits
562(3)
22.3.1 Uplink
562(2)
22.3.2 Downlink
564(1)
22.4 Linear Processing for Uplink
565(2)
22.4.1 Processing for Single-Antenna UEs
565(1)
*22.4.2 Processing for Multi-Antenna UEs
566(1)
22.5 Linear Processing for the Downlink
567(6)
22.5.1 Processing for Single-Antenna UEs
567(2)
*22.5.2 Processing for Multi-Antenna UEs
569(4)
22.6 Beamforming Based on Second-Order Statistics
573(1)
22.7 Channel Estimation and Feedback
574(1)
22.8 Scheduling for MU-MIMO
575(4)
22.8.1 Single-Cell with One UE at a Time -- Random Beamforming
576(1)
22.8.2 Multi-cell with One UE at a Time
577(1)
22.8.3 Single-Cell with Multiple UEs at a Time
577(1)
22.8.4 MU-MIMO Inter-Cell Interference Coordination
578(1)
22.8.5 General Scheduling Considerations
579(1)
22.9 Massive MIMO Theory
579(10)
22.9.1 Basic Performance
580(1)
22.9.2 Single-Cell Massive MIMO with Perfect CSI
581(2)
*22.9.3 Single-Cell Massive MIMO with Noisy CSI
583(3)
*22.9.4 Inter-Cell Interference and Pilot Contamination
586(2)
*22.9.5 Pilot Contamination Countermeasures
588(1)
22.10 Massive MIMO Implementation Aspects
589(7)
22.10.1 Antenna Configurations and Propagation Channels
589(2)
22.10.2 Hybrid Beamforming Transceivers
591(3)
*22.10.3 Implementation Aspects -- Load Modulators
594(1)
*22.10.4 Low-Resolution ADCs
595(1)
22.11 Base Station Cooperation and Distributed Antenna Systems
596(8)
22.11.1 Principle of Capacity Increase
596(2)
22.11.2 Single-Cell MIMO versus CoMP-JP
598(1)
22.11.3 Challenges Related to Channel Information Acquisition
598(2)
22.11.4 Imperfect Backhaul
600(1)
22.11.5 Cell-Free MIMO
601(3)
*22.12 Appendix: App22.pdf at www.wiley.com/go/molisch/wireless3e
604(1)
App. 22.A Smart Antennas for CDMA
604(1)
Further Reading
604(1)
Exercises: Sec. 36.22 Of Exercises.pdf at www.wUey.com/go/molisch/wireless3e
604(1)
23 Ad hoc Networks, Device-to-Device Communications, and Mesh Networks
605(30)
23.1 Introduction and Motivation
605(1)
23.2 Applications
606(1)
23.2.1 Sensor Networks
606(1)
23.2.2 Health Care Applications and Body Area Networks
606(1)
23.2.3 Gaming and Communication in Social Networks
606(1)
23.2.4 Emergency Communications
606(1)
23.2.5 Distributed Storage Systems
606(1)
23.2.6 Video Distribution
607(1)
23.2.7 Vehicular Communications
607(1)
23.3 Node Types and Hierarchical Structure
607(1)
*23.4 Neighbor Discovery and Channel Estimation
608(4)
23.4.1 General Considerations
608(1)
23.4.2 Randomized Protocols
608(1)
23.4.3 Deterministic Protocols
609(2)
23.4.4 Channel State Information Acquisition
611(1)
23.5 Scheduling of Single-Hop Transmissions
612(2)
23.5.1 Problem Formulation
612(1)
23.5.2 FlashLinQ
613(1)
23.5.3 ITLinQ
613(1)
23.5.4 CSMA, TDMA, and ALOHA
614(1)
23.6 Routing and Resource Allocation for Multi-Hop Networks
614(10)
23.6.1 Overview
614(2)
23.6.2 Mathematical Preliminaries
616(1)
23.6.3 Goals and Classifications of Routing Protocols
617(1)
23.6.4 Source Routing
618(1)
23.6.5 Link-State-Based Routing
618(1)
*23.6.6 Distance-Vector Routing
619(1)
*23.6.7 Geography-Based Routing
619(1)
23.6.8 Hierarchical Routing
620(1)
23.6.9 Impact of Node Mobility
621(1)
23.6.10 Data-Driven Routing
621(1)
23.6.11 Power Allocation Strategies
622(1)
*23.6.12 Joint Scheduling and Routing for Multi-Hop Transmission
622(2)
*23.7 Routing and Resource Allocation in Collaborative Networks
624(4)
23.7.1 Edge-Disjoint Routing and Anypath Routing
624(2)
23.7.2 Routing with Energy Accumulation
626(1)
23.7.3 Information Accumulation
626(1)
23.7.4 Other Collaborative Routing Problems
627(1)
23.7.5 Broadcasting in Ad hoc Networks
628(1)
23.8 Scaling Laws
628(2)
23.8.1 Definitions and Assumptions
628(1)
23.8.2 Throughput Capacity of Random Networks
629(1)
23.8.3 Throughput Laws with Cooperation
629(1)
23.9 Energy Management
630(2)
23.9.1 Optimization Goals
630(1)
23.9.2 Processes Influencing Energy Consumption
630(1)
23.9.3 Methods for Reducing Energy Consumption
631(1)
23.10 Cellular vs. D2D Mode in Hybrid Networks
632(1)
23.11 Mesh Networks
632(3)
Further Reading
634(1)
Exercises: Sec. 36.23 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
634(1)
Part V Advanced Transmission Techniques and Special Features
635(292)
24 Speech Coding
637(18)
Gernot Kubin
24.1 Introduction
637(2)
24.1.1 Speech Telephony as Conversational Multi-Media Service
637(1)
24.1.2 Source-Coding Basics
637(1)
24.1.3 Speech Coder Designs
638(1)
24.2 The Sound of Speech
639(3)
24.2.1 Speech Production
639(1)
24.2.2 Speech Acoustics
639(2)
24.2.3 Speech Perception
641(1)
24.3 Stochastic Models for Speech
642(3)
24.3.1 Short-Time Stationary Modeling
642(1)
24.3.2 Linear Predictive voCoder (LPC)
643(1)
24.3.3 Sinusoidal Modeling
644(1)
24.3.4 Harmonic + Noise Modeling
645(1)
24.3.5 Cyclostationary Modeling
645(1)
24.4 Quantization and Coding
645(6)
24.4.1 Scalar Quantization
645(1)
24.4.2 Vector Quantization
646(2)
24.4.3 Noise Shaping in Predictive Coding
648(1)
24.4.4 Analysis by Synthesis
649(2)
24.4.5 Joint Source Channel Coding
651(1)
24.5 From Speech Transmission to Acoustic Telepresence
651(4)
24.5.1 Voice Activity Detection
651(1)
24.5.2 Receiver End Enhancements
652(1)
24.5.3 Acoustic Echo and Noise
652(1)
24.5.4 Service Augmentation for Telepresence
652(1)
Further Reading
653(1)
Exercises: Sec. 36.24 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
653(2)
25 Video Coding
655(20)
Anthony Vetro
25.1 Introduction
655(2)
25.1.1 Digital Video Representation and Formats
655(1)
25.1.2 Video Coding Architecture
656(1)
25.2 Transform and Quantization
657(2)
25.2.1 Discrete Cosine Transform
657(1)
25.2.2 Scalar Quantization
658(1)
25.3 Prediction
659(2)
25.3.1 Intraframe Prediction
659(1)
25.3.2 Interframe Prediction
660(1)
25.4 Entropy Coding
661(1)
25.4.1 Huffman Coding
661(1)
25.4.2 Arithmetic Coding
662(1)
25.5 Video Coding Standards
662(3)
25.6 Video Coding Extensions
665(3)
25.6.1 Scalable Video Coding
665(2)
25.6.2 Multiview Video Coding
667(1)
25.6.3 360° Video Coding
667(1)
25.6.4 Screen Content Coding
668(1)
25.7 Error Control
668(3)
25.7.1 Transport Layer Mechanisms
669(1)
25.7.2 Error-Resilient Encoding of Video
669(2)
25.7.3 Error Concealment at the Decoder
671(1)
25.8 Video Streaming
671(4)
25.8.1 Networking Protocols
671(1)
25.8.2 Dynamic Adaptive Streaming over HTTP
672(1)
Further Reading
673(1)
Exercises: Sec. 36.25 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
673(2)
26 Cognitive Radio
675(16)
26.1 Types of Cognitive Radio
675(3)
26.1.1 Dynamic Spectrum Access
675(2)
26.1.2 Overlay and Underlay
677(1)
26.1.3 System Co-design
677(1)
26.2 Cognitive Transceiver Architecture
678(1)
26.3 Principles of Interweaving
679(1)
26.4 Spectrum Sensing
679(4)
26.4.1 Spectrum Sensing in a Hierarchical System
679(1)
26.4.2 Types of Detectors
680(1)
26.4.3 Multi-Node Detection
681(1)
26.4.4 Cognitive Pilots
682(1)
26.5 Spectrum Management
683(1)
26.5.1 Spectrum Opportunity Tracking
683(1)
26.5.2 Machine Learning for Spectrum Sensing and Tracking
683(1)
26.5.3 Privacy and Security Considerations
683(1)
26.6 Spectrum Sharing
683(3)
26.6.1 Introduction
683(1)
26.6.2 Noncooperative Games
684(1)
26.6.3 Games with Partial Coordination
684(1)
26.6.4 Centralized Solutions
685(1)
26.6.5 Spectrum Sharing in Open Access Systems
686(1)
26.7 Overlay
686(1)
26.8 Underlay Hierarchical Access -- Ultra Wide Bandwidth System Communications
687(4)
26.8.1 Frequency Regulations and Transmit Power Constraints of UWB Signals
687(1)
26.8.2 Methods of UWB Signal Generation
688(2)
26.8.3 Further Advantages of UWB Transmission
690(1)
26.8.4 UWB Dynamic Spectrum Access
690(1)
Further Reading
690(1)
Exercises: Sec. 36.26 Of Exercises.pdf at www.wiley.com/go/molischAvireless3e
690(1)
27 Relaying, Cooperative Communications, and Network Coding
691(20)
27.1 Introduction and Motivation
691(1)
27.1.1 Principle of Relaying
691(1)
27.2 Fundamentals of Relaying
692(4)
27.2.1 Fundamental Protocols
692(2)
27.2.2 Decode-and-Forward
694(1)
27.2.3 Amplify-and-Forward
695(1)
27.2.4 Compress-and-Forward
696(1)
27.3 Relaying with Multiple, Parallel Relays
696(7)
27.3.1 Relay Selection
697(1)
27.3.2 Distributed Beamforming
698(1)
27.3.3 Transmission on Orthogonal Channels
699(1)
27.3.4 Distributed Space-Time Coding
700(1)
*27.3.5 Coded Cooperation
700(2)
*27.3.6 Fountain Codes
702(1)
27.4 Applications
703(1)
27.5 Network Coding
704(7)
27.5.1 Network Coding Without Broadcast Effect
704(2)
27.5.2 Theoretical Performance
706(1)
27.5.3 Network Coding With Broadcast Effect
707(2)
Further Reading
709(1)
Exercises: Sec. 36.27 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
710(1)
28 Advanced Interference Processing: Multi-User Detection, Nonorthogonal Multiple Access, and Interference Alignment
711(18)
28.1 Introduction and Motivation
711(1)
28.2 Multi-User Detectors
711(4)
28.2.1 Basic Idea of Multi-User Detection
711(1)
28.2.2 Assumptions
712(1)
28.2.3 Linear Multi-User Detectors
712(1)
28.2.4 Nonlinear Multi-user Detectors
713(2)
28.3 NOMA in the Power Domain
715(6)
28.3.1 Basic Principle
715(1)
28.3.2 Downlink Rate Analysis
716(1)
28.3.3 Uplink Rate Analysis
717(1)
28.3.4 MIMO-NOMA
718(1)
28.3.5 Implementation Aspects
719(2)
*28.4 NOMA in the Code Domain
721(2)
28.4.1 Low-Density Spreading (LDS) CDMA
721(1)
28.4.2 Low-Density Spreading OFDM
722(1)
28.4.3 Sparse Code Multiple Access (SCMA)
722(1)
28.4.4 Multi-User Shared Access (MUSA)
722(1)
28.4.5 Pattern Division Multiple Access (PDMA)
722(1)
28.5 Interference Alignment
723(6)
28.5.1 Principle
723(1)
28.5.2 Signal-Space Interference Alignment with Full CSIT
724(1)
28.5.3 Blind Interference Alignment
725(1)
28.5.4 Ergodic Interference Alignment
726(1)
*28.5.5 Interference Alignment in Static Channels
726(1)
*28.5.6 Interference Alignment in Partially Connected Networks
727(1)
Further Reading
728(1)
Exercises: Sec. 36.28 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
728(1)
29 Localization
729(38)
29.1 Introduction and Motivation
729(1)
29.2 Principles of TOA/TDOA
730(11)
29.2.1 Determination of the Runtime
730(6)
29.2.2 Determination of the Location
736(4)
29.2.3 Cramer--Rao Lower Bound (CRLB)
740(1)
29.2.4 Soft Information
741(1)
29.3 NLOS Detection, Mitigation, and Exploitation
741(3)
29.3.1 NLOS Detection
742(1)
*29.3.2 NLOS Mitigation
743(1)
29.3.3 Multi-Path Exploitation
743(1)
29.4 Direction-Of-Arrival (DoA)
744(1)
29.5 RSSI and Fingerprinting
745(2)
29.5.1 RSSI-Based Range Estimation
745(1)
29.5.2 Fingerprinting
746(1)
29.6 Global Positioning System (GPS)
747(4)
29.6.1 History and Types of System
747(1)
29.6.2 System Structure
748(1)
*29.6.3 Signal Structure
748(3)
29.6.4 Localization Methods and Accuracy Enhancements
751(1)
29.6.5 Alternative Systems
751(1)
29.7 Localization in Cellular Systems
751(3)
29.7.1 Introduction
751(1)
29.7.2 Cell ID
752(1)
29.7.3 OTDOA
752(1)
29.7.4 UTDOA
753(1)
29.7.5 Wi-Fi, UWB, and Bluetooth
753(1)
29.8 Radio Frequency Identification (RFID)
754(1)
29.8.1 History
754(1)
29.8.2 Operating Principle
754(1)
29.8.3 Localization Using RFID
755(1)
*29.9 Cooperative Localization
755(2)
29.9.1 Intuitive Picture
755(1)
29.9.2 Fundamental Limits
756(1)
29.9.3 Algorithms
757(1)
*29.10 Tracking
757(4)
29.10.1 Motivation for Tracking
757(1)
29.10.2 Linear Kalman Filters
757(2)
29.10.3 Extended Kalman Filters
759(1)
29.10.4 Accuracy Improvements of Kalman Filters
760(1)
*29.11 Machine Learning for Localization
761(4)
29.11.1 Types of ML Problems
761(1)
29.11.2 Supervised Learning
762(1)
29.11.3 Training and Preprocessing
763(1)
29.11.4 Other Learning Solutions
764(1)
Further Reading
764(1)
Exercises: Sec. 36.29 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
764(1)
*Part VI System Design and Standardization
765(2)
30 System Design and Standardization
767(10)
30.1 From Components to Systems
767(2)
30.1.1 Backbone, Core Network, and Gateways
767(1)
30.1.2 System Synchronization, Joining of Users, and Mobility Management
767(1)
30.1.3 Payload Data and Control Information
768(1)
30.2 Motivation and Operation of Standards
769(4)
30.2.1 What Is a Standard?
769(1)
*30.2.2 Reading Standards Documents
770(1)
30.2.3 Advantages and Drawback of Standards Versus Proprietary Solutions
770(1)
30.2.4 The Role of ITU and National Organization
771(1)
30.2.5 3GPP and the Cellular Development
772(1)
30.2.6 IEEE and Its Standards
772(1)
30.2.7 The Creation of a Standard
773(1)
30.3 Some Important Standards
773(2)
30.3.1 Cellular Standards
774(1)
30.3.2 WLAN Standard
775(1)
30.3.3 Personal Area Networks and Internet of Things (IoT) Standards
775(1)
*30.4 Appendices: App30.pdf at www.wiley.com/go/molisch/wireless3e
775(2)
App. 30.A 2G Cellular - GSM
775(1)
App. 30.B 3G Cellular - WCDMA/UMTS
775(1)
App. 30.C Cordless Telephony -- DECT
776(1)
Exercises: Sec. 36.30 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
776(1)
31 4G Cellular -- 3GPP Long-Term Evolution (LTE)
777(46)
31.1 Introduction
777(1)
31.1.1 History
777(1)
31.1.2 Goals and Applications
777(1)
31.2 System Overview
778(6)
31.2.1 Network Structure
779(1)
31.2.2 Protocol Structure
780(1)
31.2.3 PHY and MAC Layer Overview
781(1)
31.2.4 Frequency Bands and Device Classes
782(2)
31.3 Physical Layer
784(15)
31.3.1 Overview of the Transmission Steps
784(1)
31.3.2 Coding
784(3)
31.3.3 Modulation
787(1)
31.3.4 Mapping of Modulation Symbols to Time/Frequency Resources
788(3)
31.3.5 Pilots or Reference Signals
791(4)
31.3.6 Multiple-Antenna Techniques
795(3)
31.3.7 Feedback for Adaptive Modulation and Beamforming
798(1)
31.4 Logical and Physical Channels
799(8)
31.4.1 Channel Definitions and Mapping
799(1)
31.4.2 Synchronization Signals
800(1)
31.4.3 Broadcast Channel
801(1)
31.4.4 General Aspects of Control Channels Associated with a DL-SCH
801(1)
31.4.5 Physical Control Format Indicator CHannel
802(1)
31.4.6 Physical HARQ Indicator CHannel
802(1)
31.4.7 Physical Downlink Control CHannel
802(3)
31.4.8 Physical Random Access CHannel
805(1)
31.4.9 General Aspects of Control Signals Associated with PUSCH
805(1)
31.4.10 PUCCH
805(1)
31.4.11 PUSCH
806(1)
31.5 Physical Layer Procedures
807(4)
31.5.1 Establishing a Connection
807(1)
31.5.2 Retransmissions and Reliability
808(1)
31.5.3 Scheduling
809(1)
31.5.4 Power Control
810(1)
31.5.5 Handover
810(1)
*31.6 Carrier Aggregation and License-Assisted Access
811(1)
31.6.1 Carrier Aggregation
811(1)
31.6.2 License-Assisted Access
811(1)
*31.7 CoMP, Dual Connectivity, and Hetnet Support
812(2)
31.7.1 Intercell Interference Coordination
812(1)
31.7.2 Multi-Point Coordination/Transmission
813(1)
31.7.3 Dual Connectivity
813(1)
31.7.4 Implementation of Heterogeneous Networks
814(1)
*31.8 Relaying
814(1)
31.8.1 General Architecture
814(1)
31.8.2 Frame Structure and Timing
815(1)
31.8.3 HARQ
815(1)
*31.9 LTE for Machine-Type Applications
815(2)
31.9.1 General Principles
815(1)
31.9.2 Enhanced Machine-Type Communications
816(1)
31.9.3 Narrowband IoT
816(1)
*31.10 Device-to-Device Communications -- Sidelink
817(6)
31.10.1 Motivation, Architecture, and Channel Structure
817(1)
31.10.2 Synchronization
818(1)
31.10.3 Discovery
819(1)
31.10.4 Communications
819(1)
Glossary for LTE
820(2)
Further Reading
822(1)
Exercises: Sec. 36.31 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
822(1)
32 SG Cellular -- 3GPP New Radio (NR)
823(40)
32.1 Introduction
823(2)
32.1.1 History
823(1)
32.1.2 Goals and Applications
823(2)
32.2 System Overview
825(5)
32.2.1 Network Structure
825(2)
32.2.2 Protocol Structure
827(1)
32.2.3 PHY and MAC Layer Overview
828(1)
32.2.4 Frequency Bands and Spectrum Flexibility
829(1)
32.3 Physical Layer
830(13)
32.3.1 Overview of the Transmission Steps
830(1)
32.3.2 Coding and Scrambling
830(2)
32.3.3 Modulation
832(1)
32.3.4 Mapping of Modulation Symbols to Time/Frequency Resources
832(3)
32.3.5 Pilots or Reference Signals
835(4)
32.3.6 Multiple-Antenna Techniques
839(2)
32.3.7 Beam Management
841(2)
32.4 Physical and Logical Channels
843(8)
32.4.1 Mapping of Data onto Logical Channels
843(1)
32.4.2 Synchronization Signals
844(1)
32.4.3 Broadcast CHannel
845(1)
32.4.4 General Aspects of Control Channels Associated with a DL-SCH
846(1)
32.4.5 Physical Control Format Indicator CHannel (PCFICH)
846(1)
32.4.6 Physical HARQ Indicator CHannel
846(1)
32.4.7 Physical Downlink Control CHannel
846(3)
32.4.8 Physical Random Access CHannel
849(1)
32.4.9 General Aspects of Control Signals Associated with the PUSCH Uplink Control Signals
849(1)
32.4.10 PUCCH
850(1)
32.4.11 PUSCH
851(1)
32.5 Physical Layer Procedures
851(3)
32.5.1 Establishing a Connection
851(1)
32.5.2 Retransmission and Reliability
852(1)
32.5.3 Scheduling
853(1)
32.5.4 Power Control
854(1)
*32.6 Carrier Aggregation and License-Assisted Access
854(2)
32.6.1 Carrier Aggregation
854(1)
32.6.2 License-Assisted Access and Stand-Alone Unlicensed Operation
855(1)
*32.7 CoMP, Dual Connectivity, and HetNet Support
856(1)
32.7.1 Inter-Cell Interference Coordination
856(1)
32.7.2 Multi-Point Coordination/Transmission
856(1)
32.7.3 Dual Connectivity
856(1)
*32.8 Relaying
856(1)
*32.9 NR for Machine-Type Communications
857(1)
*32.10 Device-to-Device Communications - Sidelink
858(5)
32.10.1 Motivation, Architecture, and Channel Structure
858(1)
32.10.2 Synchronization
859(1)
32.10.3 Discovery and Resource Allocation
859(1)
32.10.4 Communications
859(1)
Glossary for 5G-NR
860(2)
Further Reading
862(1)
Exercises: Sec. 36.32 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
862(1)
33 Wireless Local Area Networks
863(32)
33.1 Introduction
863(4)
33.1.1 History
863(2)
33.1.2 Applications
865(1)
33.1.3 Relationship Between MAC and PHY Layer
865(1)
33.1.4 Spectrum Considerations
865(2)
33.2 802.11a/g - OFDM-Based LANs
867(3)
33.2.1 Modulation and Coding
868(1)
33.2.2 Preamble and Header
869(1)
33.3 802.11n -- High-throughput Transmission
870(6)
33.3.1 Overview
870(1)
33.3.2 Modulation and Coding
871(1)
33.3.3 Multiple Antenna Techniques
872(1)
33.3.4 20 MHz and 40 MHz Channels
872(1)
33.3.5 Preamble and Header
873(1)
33.3.6 Channel Estimation
874(2)
33.4 The MAC Layer in 802.11a/g and 802.11n
876(7)
33.4.1 Network Structure and Purpose of the MAC
876(1)
33.4.2 Joining and Leaving a Network
876(1)
33.4.3 Multiple Access Methods
876(5)
33.4.4 Frame Format
881(1)
33.4.5 Fragmentation, Aggregation, and Acknowledgements
881(2)
33.5 IEEE 802.11ac
883(3)
33.5.1 Overview
883(1)
33.5.2 Channelization
883(1)
33.5.3 Preamble
883(2)
33.5.4 Transmit Beamforming
885(1)
33.5.5 Downlink Multi-User MIMO
885(1)
33.6 802.11ax/Wi-Fi 6
886(9)
33.6.1 Modulation and Channel Assignment
887(1)
33.6.2 Frame Formats
887(2)
33.6.3 Multiple Access
889(2)
33.6.4 Spatial Reuse
891(1)
33.6.5 Power Saving and Reservation Access
891(1)
33.6.6 Beyond 802.11ax
892(1)
Glossary for WiFi
892(2)
Further Reading
894(1)
Exercises: Sec. 36.33 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
894(1)
34 PAN and Internet of Things -- Bluetooth and Zigbee
895(18)
34.1 Bluetooth
895(12)
34.1.1 Overview and Applications
895(1)
34.1.2 Bluetooth Network Structure and Link Control
896(3)
34.1.3 Bluetooth Radio
899(2)
34.1.4 Bluetooth Packet Structure
901(2)
34.1.5 Bluetooth Low Energy
903(4)
34.2 Zigbee
907(6)
34.2.1 Overview and Applications
907(1)
34.2.2 Physical Layer
907(1)
34.2.3 Packet Structure and MAC
908(1)
34.2.4 Network Structure
908(1)
34.2.5 Ultrawideband Modes
909(3)
Glossary
912(1)
Further Reading
912(1)
Exercises: Sec. 36.34 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
912(1)
35 Beyond 5G
913(14)
35.1 Motivation and Process
913(1)
35.2 Applications
913(3)
35.2.1 Holography, Extended Reality, and Other High-Data-Rate Applications
913(1)
35.2.2 Real-Time Information and Control
914(1)
35.2.3 Network and Computing Convergence
914(1)
35.2.4 Connectivity for All Things and 3D Networks
915(1)
35.2.5 Summary of Key Requirements
916(1)
35.3 Network Design in B5G
916(2)
35.3.1 B5G Network Design Principles
917(1)
35.4 Spectrum Usage for B5G
918(1)
35.5 Physical and MAC Layer Aspects
918(4)
35.5.1 Propagation Channels
918(1)
35.5.2 Modulation and Coding
919(1)
35.5.3 Multiple Antenna Techniques
920(1)
35.5.4 Free-Space Optical Communications
921(1)
35.5.5 Backscatter Communication and Wirelessly Powered Communications
921(1)
35.5.6 Physical-Layer Security and Encryption
921(1)
35.5.7 Multiple Access Techniques
922(1)
35.5.8 Vehicular Communications
922(1)
35.6 Real-Time Processing and RF Transceiver Design
922(1)
35.6.1 Implications of Increasing Carrier Bandwidths
922(1)
35.6.2 Hardware Challenges for mm-wave and THz Frequency Bands
922(1)
35.6.3 Energy Consumption and Efficiency
923(1)
35.7 Use of Machine Learning
923(1)
35.8 A Final Word on New Technologies
924(3)
Further Reading
925(1)
Exercises: Sec. 36.35 Of Exercises.pdf at www.wiley.com/go/molisch/wireless3e
925(2)
References 927(26)
Index 953(10)
About the Author 963
Andreas F. Molisch, PhD, is Professor and Golomb-Viterbi Chair at the University of Southern California, USA. He has authored, co-authored, or edited 4 books, 21 book chapters, over 270 journal papers, and 70 patents. He is an IEEE Distinguished Lecturer, a Fellow of the National Academy of Inventors, Fellow of AAAS, IEEE, and IET, and Member of the Austrian Academy of Sciences.