Muutke küpsiste eelistusi

XAFS for Everyone [Pehme köide]

(Lehman College, New York; Sarah Lawrence College, Bronxville, New York, USA)
  • Formaat: Paperback / softback, 460 pages, kõrgus x laius: 280x210 mm, kaal: 1080 g, 18 Tables, black and white; 9 Illustrations, color; 325 Illustrations, black and white
  • Ilmumisaeg: 20-May-2013
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1439878633
  • ISBN-13: 9781439878637
  • Pehme köide
  • Hind: 165,25 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 460 pages, kõrgus x laius: 280x210 mm, kaal: 1080 g, 18 Tables, black and white; 9 Illustrations, color; 325 Illustrations, black and white
  • Ilmumisaeg: 20-May-2013
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1439878633
  • ISBN-13: 9781439878637
Drawing on his experience using x-ray absorption fine structure (XAFS) spectroscopy to study systems ranging from magnetic nanoparticles to pigments in 18th-century paintings, Calvin (natural science and mathematics, Sarah Lawrence College) presents a practical guide to this powerful scientific tool. Cartoon icons introduce the theoretical basics and the experimental process. The section on modeling features a dictionary of parameters. Case studies from the literature with added critical thinking questions include identification of harmful sulfur compounds in wood cores taken from the wreck of the Mary Rose, and identification of particulates in auto exhaust. Includes a list of popular XAFS analysis software. Illustrated by Kirin Emlet Furst. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

XAFS for Everyone provides a practical, thorough guide to x-ray absorption fine-structure (XAFS) spectroscopy for both novices and seasoned practitioners from a range of disciplines. The text is enhanced with more than 200 figures as well as cartoon characters who offer informative commentary on the different approaches used in XAFS spectroscopy.

The book covers sample preparation, data reduction, tips and tricks for data collection, fingerprinting, linear combination analysis, principal component analysis, and modeling using theoretical standards. It describes both near-edge (XANES) and extended (EXAFS) applications in detail. Examples throughout the text are drawn from diverse areas, including materials science, environmental science, structural biology, catalysis, nanoscience, chemistry, art, and archaeology. In addition, five case studies from the literature demonstrate the use of XAFS principles and analysis in practice. The text includes derivations and sample calculations to foster a deeper comprehension of the results.

Whether you are encountering this technique for the first time or looking to hone your craft, this innovative and engaging book gives you insight on implementing XAFS spectroscopy and interpreting XAFS experiments and results. It helps you understand real-world trade-offs and the reasons behind common rules of thumb.

Arvustused

"The book is very timely It is unique in covering theoretical background and experimental details to data analysis in a way that is easy to understand. It will be very valuable to anyone who is interested in using x-ray spectroscopy by helping them to better design and get more out of their experiments." Dr. Chi-Chang Kao, Director, SLAC National Accelerator Laboratory

"The author has found fun and engaging ways to explain details of XAFS that otherwise can seem so dry. I am sure that folks who use my beamline and software will love XAFS for Everyone." Dr. Bruce Ravel, National Institute of Standards and Technology

"A unique presentation with great value for readers and special emphasis on practical aspects a must have for XAFS scientists and beamlines." Prof. Mark C. Ridgway, Department of Electronic Materials Engineering, Australian National University

"This book will be useful to graduate students, post docs, and researchers. I highly recommend it." Dr. Richard W. Strange, Molecular Biophysics, The University of Liverpool

Preface xv
Author xix
About the Panel xxi
Introduction xxiii
Part I THE XAFS EXPERIMENT
1 XAFS in a Nutshell
3(28)
1.1 X-Ray Absorption Spectra
4(1)
1.1.1 X-Ray Absorption Spectroscopy
4(1)
1.1.2 Background
5(1)
1.1.3 Edge
5(1)
1.1.4 X-Ray Absorption Near-Edge Structure
5(1)
1.1.5 Extended X-Ray Absorption Fine Structure
5(1)
1.2 Basics of EXAFS Theory
5(10)
1.2.1 Fermi's Golden Rule
5(1)
1.2.2 EXAFS Is Due to Interference of an Electron with Itself
6(2)
1.2.3 Relationship of k to Photon Energy
8(1)
1.2.4 EXAFS and Structure
8(1)
1.2.5 Scattering Probability
8(1)
1.2.6 Multiple Neighbors
9(1)
1.2.7 Multiple Scattering
10(1)
1.2.8 Phase Shifts
10(1)
1.2.9 Spherical Waves
11(1)
1.2.10 Incomplete Overlap
12(1)
1.2.11 Mean Free Path
12(1)
1.2.12 EXAFS Is an Average
13(2)
1.2.13 Enough for Now
15(1)
1.3 Some Terminology
15(3)
1.3.1 Edge
15(1)
1.3.2 XANES
16(1)
1.3.3 NEXAFS
16(1)
1.3.4 EXAFS
16(1)
1.3.5 White Line
16(1)
1.3.6 Pre-Edge
17(1)
1.3.7 Eo
17(1)
1.4 Data Reduction
18(5)
1.4.1 From Raw Data to X(k)
18(2)
1.4.2 Fourier Transform
20(3)
1.5 XAFS Is Not a Black Box
23(1)
1.6 Overview of Approaches to XAFS Analysis
24(7)
1.6.1 Fingerprinting
24(1)
1.6.2 Linear Combination Analysis
25(1)
1.6.3 Principal Component Analysis
25(2)
1.6.4 Curve Fitting to a Theoretical Standard
27(2)
References
29(2)
2 Planning the Experiment
31(16)
2.1 Identifying Your Questions
32(1)
2.2 Synchrotron Light Sources
32(3)
2.3 Bending Magnets and Insertion Devices
35(3)
2.3.1 Brilliance
35(1)
2.3.2 Wigglers
36(1)
2.3.3 Undulators
37(1)
2.4 Monochromators (and Polychromators)
38(1)
2.5 Measurement Modes and Detectors
39(3)
2.5.1 Measurement Modes
39(1)
2.5.2 Ex Situ, In Situ, and Operando
40(1)
2.5.3 Ion Chambers
40(1)
2.5.4 Energy-Discriminating Fluorescence Detectors
41(1)
2.5.5 Current-Mode Semiconductor Detectors
41(1)
2.5.6 Other Detectors
41(1)
2.5.7 Electron Yield
41(1)
2.5.8 Beamline Equipment
42(1)
2.5.9 Simultaneous Probes
42(1)
2.5.10 Microprobe
42(1)
2.6 Experimental Design
42(1)
2.7 Getting Beamtime
43(4)
References
45(2)
3 Sample Preparation
47(38)
3.1 XAFS Samples
48(1)
3.2 Absorption
48(3)
3.2.1 Undesirable Photons
48(1)
3.2.2 The Absorption Coefficient
49(2)
3.3 Sample Characteristics for Transmission
51(10)
3.3.1 Thickness, Mass, and Absorption Lengths
51(1)
3.3.2 Uniformity
52(2)
3.3.3 A Short Digression on Noise
54(1)
3.3.4 Optimum Thickness for Transmission
55(2)
3.3.5 Edge Jump
57(4)
3.4 Sample Characteristics for Fluorescence
61(10)
3.4.1 From Incidence to Detection
61(2)
3.4.1.1 Limiting Case: Thin and Concentrated
63(1)
3.4.1.2 Limiting Case: Thin and Dilute
63(1)
3.4.1.3 Limiting Case: Thick and Concentrated
64(1)
3.4.1.4 Limiting Case: Thick and Dilute
64(1)
3.4.2 Understanding Your Sample
65(1)
3.4.2.1 A Thin Film on a Thick Substrate, Such as Some Common Solar Cell Designs
66(1)
3.4.2.2 A Heterogenous Soil Sample with the Element of Interest Concentrated in Grains Sparsely Scattered through the Material
66(1)
3.4.2.3 A Material in Solution
66(1)
3.4.2.4 A Gas
66(1)
3.4.3 The Mathematics of Self-Absorption
67(1)
3.4.4 Geometrical Factors
68(2)
3.4.5 How Thick Is "Thick"?
70(1)
3.4.6 How Concentrated Is "Concentrated"?
71(1)
3.5 Sample Considerations for Electron Yield Experiments
71(1)
3.6 Which Technique Should You Choose?
72(1)
3.7 Preparing Samples
72(13)
3.7.1 Powder
73(1)
3.7.1.1 Fillers
73(1)
3.7.1.2 Procedure for Sedimentation
74(1)
3.7.1.3 Procedure for Spreading on Tape
75(2)
3.7.1.4 Powders without All That Tape: Pressing into a Pellet
77(1)
3.7.1.5 Air-Sensitive Powders
77(2)
3.7.2 Thin Films
79(1)
3.7.3 Solid Metals
79(1)
3.7.4 Solutions and Liquids
80(1)
3.7.5 Gases
80(1)
3.7.6 Environmental
81(1)
3.7.7 In Situ and Operando
81(2)
References
83(2)
4 Data Reduction
85(40)
4.1 Preprocessing
86(1)
4.1.1 Rebinning
86(1)
4.1.2 Selecting Channels and Scans
86(1)
4.1.3 Calculating Unnormalized Absorption
87(1)
4.1.4 Truncation
87(1)
4.2 Calibration and Alignment
87(4)
4.2.1 Aligning Reference Scans
87(1)
4.2.2 Merging
88(2)
4.2.3 Calibrating
90(1)
4.3 Finding Normalized Absorption
91(8)
4.3.1 Deadtime Correction
91(1)
4.3.2 Deglitching
91(1)
4.3.3 Choosing Eo
91(1)
4.3.4 Normalization
92(7)
4.3.5 Self-Absorption Correction
99(1)
4.4 Finding X(k)
99(5)
4.4.1 Background Subtraction
99(4)
4.4.2 X(E)
103(1)
4.4.3 Converting from E to k
104(1)
4.4.4 A Second Chance at Self-Absorption Correction
104(1)
4.4.5 Weighting X(k)
104(1)
4.5 Finding the Fourier Transform
104(21)
4.5.1 About Fourier Transforms
104(1)
4.5.2 Data Ranges Are Finite
105(6)
4.5.3 Windows
111(1)
4.5.4 Zero Padding
112(1)
4.5.5 Choice of Windows
113(2)
4.5.6 Fourier Transforms Are Complex
115(4)
4.5.7 "Corrected" Fourier Transforms
119(1)
4.5.8 Back-Transforms
120(3)
References
123(2)
5 Data Collection
125(56)
5.1 Noise, Distortion, and Time
126(1)
5.2 Detector Choice
127(7)
5.2.1 Predicting Signal-to-Noise Ratio in Transmission
127(4)
5.2.2 Signal-to-Noise Ratio in Fluorescence
131(1)
5.2.2.1 Very Thin Samples
131(1)
5.2.2.2 Very Thick Samples
132(1)
5.2.2.3 Dilute Samples
132(1)
5.2.3 Energy-Discriminating Fluorescence Detectors
133(1)
5.3 Before You Begin
134(2)
5.3.1 Plan Your Beamtime
134(1)
5.3.2 Get to Know Your Beamline
135(1)
5.4 Optimizing the Beam
136(9)
5.4.1 Aligning the Beam
136(1)
5.4.2 Choosing Pre-Io Vertical Slit Width
136(4)
5.4.3 Reducing Harmonics
140(1)
5.4.3.1 Harmonic Rejection Mirror
140(1)
5.4.3.2 Detuning
141(3)
5.4.3.3 Testing for Harmonics
144(1)
5.5 Ion Chambers
145(4)
5.5.1 Physics of Ion Chambers
145(1)
5.5.2 Limitations
146(1)
5.5.3 Choosing Fill Gasses
146(2)
5.5.4 Amplifiers
148(1)
5.6 Suppressing Fluorescent Background
149(7)
5.6.1 Suppressing Scatter Peaks
150(4)
5.6.2 Suppressing Low-Energy Peaks
154(1)
5.6.3 Making the Choice
155(1)
5.7 Aligning the Sample
156(3)
5.8 Scan Parameters
159(5)
5.8.1 Scan Regions
160(2)
5.8.2 Number of Scans
162(1)
5.8.3 Time-Resolved Studies
163(1)
5.8.4 Making the Most of Your Beamtime
164(1)
5.9 "What's That?"
164(17)
5.9.1 Noise
164(1)
5.9.1.1 Cause
164(1)
5.9.1.2 Identification
164(1)
5.9.1.3 Effect on Analysis
164(1)
5.9.1.4 Prevention
165(1)
5.9.1.5 Mitigation
165(1)
5.9.1.6 Silver Lining
165(1)
5.9.2 Monochromator Glitches
165(1)
5.9.2.1 Cause
165(1)
5.9.2.2 Identification
165(1)
5.9.2.3 Effect on Analysis
166(1)
5.9.2.4 Prevention
166(1)
5.9.2.5 Mitigation
166(1)
5.9.2.6 Silver Lining
166(1)
5.9.3 Other Edges
166(1)
5.9.3.1 Cause
166(1)
5.9.3.2 Identification
166(1)
5.9.3.3 Effect on Analysis
167(1)
5.9.3.4 Prevention
167(1)
5.9.3.5 Mitigation
167(1)
5.9.3.6 Silver Lining
167(1)
5.9.4 Other EXAFS
167(1)
5.9.4.1 Cause
167(1)
5.9.4.2 Identification
167(1)
5.9.4.3 Effect on Analysis
168(1)
5.9.4.4 Prevention
168(1)
5.9.4.5 Mitigation
168(1)
5.9.4.6 Silver Lining
169(1)
5.9.5 Multielectron Excitations
169(1)
5.9.5.1 Cause
169(1)
5.9.5.2 Identification
169(1)
5.9.5.3 Effect on Analysis
170(1)
5.9.5.4 Prevention
170(1)
5.9.5.5 Mitigation
170(1)
5.9.6 Bragg Peaks
170(1)
5.9.6.1 Cause
170(1)
5.9.6.2 Identification
170(1)
5.9.6.3 Effect on Analysis
171(1)
5.9.6.4 Prevention
171(1)
5.9.6.5 Mitigation
171(1)
5.9.7 Monotonic Time-Dependent Effects
171(1)
5.9.7.1 Cause
171(1)
5.9.7.2 Identification
171(1)
5.9.7.3 Effect on Analysis
172(1)
5.9.7.4 Prevention
172(1)
5.9.7.5 Mitigation
172(1)
5.9.7.6 Silver Lining
172(1)
5.9.8 Oscillatory Time-Dependent Effects
172(1)
5.9.8.1 Cause
172(1)
5.9.8.2 Identification
172(1)
5.9.8.3 Effect on Analysis
172(1)
5.9.8.4 Mitigation
173(1)
5.9.8.5 Silver Lining
173(1)
5.9.9 Electronics Out of Range
173(1)
5.9.9.1 Cause
173(1)
5.9.9.2 Identification
173(1)
5.9.9.3 Effect on Analysis
174(1)
5.9.9.4 Prevention
174(1)
5.9.9.5 Mitigation
174(1)
5.9.10 Sample Motion
174(1)
5.9.10.1 Cause
174(1)
5.9.10.2 Identification
174(1)
5.9.10.3 Effect on Analysis
175(1)
5.9.10.4 Prevention
175(1)
5.9.10.5 Mitigation
175(1)
5.9.11 Loss of Beam
175(1)
5.9.11.1 Cause
175(1)
5.9.11.2 Identification
175(1)
5.9.11.3 Effect on Analysis
175(1)
References
176(5)
Part II XAFS ANALYSIS
6 Fingerprinting
181(14)
6.1 Matching Empirical Standards
182(1)
6.2 Fingerprinting Spectral Features
183(3)
6.3 Semiquantitative Fingerprinting
186(5)
6.3.1 Example: Vanadium XANES
187(1)
6.3.2 Fitting Features
188(3)
6.4 Theoretical XANES Standards
191(4)
References
194(1)
7 Linear Combination Analysis
195(28)
7.1 When LCA Works
196(1)
7.1.1 A Simple Example
196(1)
7.1.2 Intimate Mixtures in Transmission
197(1)
7.1.3 Intimate Mixtures in Fluorescence
197(1)
7.2 When LCA Doesn't Work
197(2)
7.2.1 Nonuniform Samples in Transmission
198(1)
7.2.2 Surface Gradients in Thick Fluorescence Samples
199(1)
7.2.3 Surface Gradients in Electron Yield Experiments
199(1)
7.3 An Example of LCA
199(3)
7.4 Statistics of Linear Combination Fitting
202(8)
7.4.1 Normalization: A Source of Systematic Error
202(2)
7.4.2 Degrees of Freedom and Statistically Distinguishable Fits
204(1)
7.4.3 Quantifying Fit Mismatch
205(1)
7.4.4 Degrees of Freedom
206(1)
7.4.5 The Hamilton Test
207(1)
7.4.6 Uncertainties
208(2)
7.5 Combinatoric Fitting
210(1)
7.6 Sources of Systematic Error
211(3)
7.6.1 Energy Alignment
211(1)
7.6.2 Background
212(1)
7.6.3 Attenuation: Self-Absorption, Inhomogeneous Transmission Samples, Harmonics, Dead Time, and So On
213(1)
7.6.4 Energy Resolution
213(1)
7.6.5 Glitches
213(1)
7.6.6 Noise
213(1)
7.7 Choosing Data Range and Space for LCA
214(9)
7.7.1 XANES in Energy Space
215(1)
7.7.2 XANES in Derivative Space
215(1)
7.7.3 EXAFS in Energy Space
215(1)
7.7.4 EXAFS in X(k)
216(5)
7.7.5 The Back-Transform of EXAFS
221(1)
References
222(1)
8 Principal Component Analysis
223(24)
8.1 Introduction
224(1)
8.1.1 An Example from the Literature
224(1)
8.1.2 Isosbestic Points
224(1)
8.2 The Idea of PCA
225(4)
8.3 How Many Components?
229(6)
8.3.1 Appearance of Components
229(1)
8.3.2 Fourier Transform of Components
230(1)
8.3.3 Compare to Measurement Error
231(1)
8.3.4 Scree
232(2)
8.3.5 Objective Criteria
234(1)
8.4 How Many Constituents?
235(3)
8.4.1 Relationship to Number of Components
235(1)
8.4.2 Energy Misalignment
236(2)
8.4.3 Other Structural Free Parameters
238(1)
8.4.4 Coupled Constituents
238(1)
8.5 PCA Formalism
238(2)
8.6 Cluster Analysis
240(1)
8.7 Target Transforms
241(3)
8.8 PCA of EXAFS
244(1)
8.9 How PCA Is Used
244(1)
8.10 Future Developments
244(3)
References
245(2)
9 Curve Fitting to Theoretica Standards
247(18)
9.1 Fitting
248(2)
9.2 Theoretical Standards
250(3)
9.2.1 Muffin-Tin Potentials
250(2)
9.2.2 Final State Rule
252(1)
9.2.3 Losses
252(1)
9.3 The Path Expansion
253(4)
9.3.1 Convergence
253(3)
9.3.2 Full Multiple Scattering
256(1)
9.4 Fitting Strategies
257(8)
9.4.1 Bottom-Up Strategy
258(1)
9.4.2 Top-Down Strategy
259(1)
References
260(5)
Part III MODELING
10 A Dictionary of Parameters
265(32)
10.1 Common Fitting Parameters
266(16)
10.1.1 Half Path Length
266(1)
10.1.1.1 Symbol D
266(1)
10.1.1.2 Nomenclature
266(1)
10.1.1.3 Physical Interpretation
266(1)
10.1.1.4 Typical Values
267(1)
10.1.1.5 Effect on X(k)
267(1)
10.1.1.6 Effect on Fourier Transform
268(1)
10.1.1.7 Common Constraints
268(1)
10.1.1.8 Correlations
269(1)
10.1.2 Degeneracy
269(1)
10.1.2.1 Symbol N
269(1)
10.1.2.2 Nomenclature
269(1)
10.1.2.3 Physical Interpretation
269(1)
10.1.2.4 Typical Values
270(1)
10.1.2.5 Effect on x(k)
270(1)
10.1.2.6 Effect on Fourier Transform
270(1)
10.1.2.7 Common Constraints
270(2)
10.1.2.8 Correlations
272(1)
10.1.3 Mean Square Relative Displacement
273(1)
10.1.3.1 Symbol σ2, C2
273(1)
10.1.3.2 Nomenclature
273(1)
10.1.3.3 Physical Interpretation
273(1)
10.1.3.4 Typical Values
273(1)
10.1.3.5 Effect on X(k)
273(1)
10.1.3.6 Effect on Fourier Transform
274(1)
10.1.3.7 Common Constraints
274(1)
10.1.3.8 Correlations
275(1)
10.1.4 Amplitude Reduction Factor
275(1)
10.1.4.2 Symbol So2
275(1)
10.1.4.2 Nomenclature
275(1)
10.1.4.3 Physical Interpretation
275(2)
10.1.4.4 Typical Values
277(1)
10.1.4.5 Effect on X(k)
277(1)
10.1.4.6 Effect on Fourier Transform
277(1)
10.1.4.7 Common Constraints
277(2)
10.1.4.8 Correlations
279(1)
10.1.5 Eo
279(1)
10.1.5.1 Symbol Eo
279(1)
10.1.5.2 Nomenclature
279(1)
10.1.5.3 Physical Interpretation
279(1)
10.1.5.4 Typical Values
279(1)
10.1.5.5 Effect on X(k)
280(1)
10.1.5.6 Effect on Fourier Transform
280(1)
10.1.5.7 Common Constraints
280(2)
10.1.5.8 Correlations
282(1)
10.2 Less Common Fitting Parameters
282(8)
10.2.1 Cumulants
282(1)
10.2.2 Third Cumulant
283(1)
10.2.2.1 Symbol C3, σ(3)
283(1)
10.2.2.2 Physical Interpretation
283(1)
10.2.2.3 Typical Values
283(1)
10.2.2.4 Effect on X(k)
283(1)
10.2.2.5 Effect on Fourier Transform
283(1)
10.2.2.6 Common Constraints
284(1)
10.2.2.7 Correlations
285(1)
10.2.3 Fourth Cumulant
285(1)
10.2.3.1 Symbol C4, σ(4)
285(1)
10.2.3.2 Physical Interpretation
285(1)
10.2.3.3 Typical Values
285(1)
10.2.3.4 Effect on X(k)
285(1)
10.2.3.5 Effect on Fourier Transform
286(1)
10.2.3.6 Common Constraints
286(1)
10.2.3.7 Correlations
286(1)
10.2.4 Fifth and Higher Cumulants
287(1)
10.2.5 Mean Free Path
287(1)
10.2.5.1 Symbol λ(k)
287(1)
10.2.5.2 Physical Interpretation
287(1)
10.2.5.3 Typical Values
287(1)
10.2.5.4 Effect on X(k)
288(1)
10.2.5.5 Effect on Fourier Transform
288(1)
10.2.5.6 Common Constraints
289(1)
10.2.5.7 Correlations
289(1)
10.3 Scattering Parameters
290(7)
References
296(1)
11 Identifying a Good Fit
297(22)
11.1 Criterion 1: Statistical Quality
298(7)
11.1.1 Number of Independent Points in EXAFS
298(3)
11.1.2 Measurement Uncertainty
301(2)
11.1.3 Reduced X2
303(2)
11.2 Criterion 2: Closeness of Fit
305(3)
11.2.1 R-Factor
305(1)
11.2.2 Hamilton Test
306(2)
11.3 Criterion 3: Precision
308(2)
11.3.1 Finding Uncertainties in Fitted Parameters
308(1)
11.3.2 Calculations of Uncertainties by Analysis Software
309(1)
11.3.3 How Precise?
309(1)
11.3.4 Correlations
310(1)
11.4 Criterion 4: Size of Data Ranges
310(1)
11.5 Criterion 5: Agreement Outside the Fitted Range
311(2)
11.6 Criterion 6: Stability
313(1)
11.7 Criterion 7: Are the Results Physically Possible?
314(1)
11.8 Criterion 8: How Defensible Is the Model?
315(1)
11.9 Evaluating a Fit
316(3)
References
318(1)
12 The Process of Fitting
319(18)
12.1 Identify Your Questions
320(1)
12.1.1 Example: Which Ligand?
320(1)
12.1.2 Example: Where's the Dopant?
321(1)
12.2 Prepare Your Data
321(4)
12.2.1 Transform to X(k)
321(1)
12.2.2 Choose k-Weighting
321(1)
12.2.3 Choose k-Range
322(3)
12.2.4 Choose k-Window
325(1)
12.3 Plan Your Strategy
325(2)
12.3.1 Example: Which Ligand?
325(1)
12.3.2 Example: Where's the Dopant?
325(2)
12.4 Fit!
327(10)
12.4.1 Choice of R-Range
327(1)
12.4.1.1 Example: Which Ligand?
328(2)
12.4.1.2 Example: Where's the Dopant?
330(1)
12.4.2 Art of Fitting
330(3)
12.4.3 Perfecting Your Fit
333(1)
12.4.4 Stressing Your Fit
334(1)
References
335(2)
13 Starting Structures
337(12)
13.1 Crystal Structures
338(3)
13.1.1 Cluster Size and EXAFS
338(2)
13.1.2 Cluster Size and XANES
340(1)
13.1.3 Sources for Crystal Structures
341(1)
13.2 Calculated Structures
341(1)
13.3 Mixtures
342(2)
13.4 Inequivalent Absorbing Sites
344(1)
13.5 Histogram Methods
344(1)
13.6 Multiple-Edge Fits
344(2)
13.7 Site Occupancy
346(3)
13.7.1 Vacancies
346(1)
13.7.2 Treating as a Mixture
347(1)
13.7.4 Creating a Mixed Model
347(1)
13.7.4 Creating Multiple Mixed Models
347(1)
References
348(1)
14 Constraints
349(26)
14.1 Rigorous Constraints
350(1)
14.2 Constraints Based on a Priori Knowledge
350(1)
14.3 Constraints for Simplification
351(5)
14.3.1 Constraints Based on Grouping
351(2)
14.3.2 Constraints Based on Estimates
353(1)
14.3.3 Constraints Based on Standards
354(2)
14.4 Some Special Cases
356(3)
14.4.1 Lattice Scaling
356(1)
14.4.2 Correlated Debye Model
357(2)
14.5 Multiple-Scattering Paths
359(10)
14.5.2 Focused Paths
359(2)
14.5.2 Double Paths
361(1)
14.5.3 Conjoined Paths
362(1)
14.5.4 Triangles, Quadrilaterals, and Other Minor Multiple-Scattering Paths
362(7)
14.6 Alternatives for Incorporating a Priori Knowledge
369(6)
14.6.1 Restraints
369(1)
14.6.2 Bayes-Turchin Analysis
370(1)
References
371(4)
Part IV XAFS IN THE LITERATURE
15 Communicating XAFS
375(8)
15.1 Know Your Audience
376(1)
15.2 Experimental Details
376(1)
15.3 Data
377(1)
15.3.1 What to Include
377(1)
15.3.2 Labeling Graphs
377(1)
15.3.3 Estimate of Noise
378(1)
15.4 Data Reduction
378(1)
15.5 Models and Standards
378(1)
15.5.1 Curve Fitting to Theoretical Standards
378(1)
15.5.2 Linear Combination Analysis and Principal Component Analysis
379(1)
15.6 Results
379(2)
15.6.1 Graphs of Fits
379(1)
15.6.2 Closeness of Fit
379(1)
15.6.3 Uncertainties
380(1)
15.7 Conclusions
381(2)
Reference
381(2)
16 Case Studies
383(33)
16.2 Introduction to the Case Studies
384(1)
16.2 Lead Titanate, a Ferroelectric
384(9)
16.2.2 The Paper
384(1)
16.2.2 The Scientific Question
384(1)
16.2.3 Why XAFS?
385(1)
16.2.4 The Structure
386(1)
16.2.5 Experimental Considerations
387(2)
16.2.6 The Model
389(1)
16.2.6.1 Paths
389(1)
16.2.6.2 Free Parameters
390(1)
16.2.6.3 Constraints
390(1)
16.2.6.4 Degrees of Freedom
391(1)
16.2.7 Drawing Conclusions
391(1)
16.2.8 Presentation
392(1)
16.3 An Iron-Molybdenum Cofactor Precursor
393(8)
16.3.1 The Paper
393(1)
16.3.2 The Scientific Question
393(1)
16.3.3 Why XAFS?
394(1)
16.3.4 A Challenge and a Solution
394(1)
16.3.5 Possible Structures
394(1)
16.3.6 Experimental Considerations
395(1)
16.3.7 Fingerprinting
396(1)
16.3.8 The Models for EXAFS
396(1)
16.3.8.1 Paths
397(1)
16.3.8.2 Free Parameters
397(1)
16.3.8.3 Constraints
398(1)
16.3.8.4 Degrees of Freedom
399(1)
16.3.9 Drawing Conclusions
399(1)
16.3.10 Presentation
400(1)
16.4 Manganese Zinc Ferrite, an Example of Fitting Site Occupancy
401(6)
16.4.1 The Paper
401(1)
16.4.2 The Scientific Question
401(1)
16.4.3 Why XAFS?
402(1)
16.4.4 The Structure
402(1)
16.4.5 Experimental Considerations
402(1)
16.4.6 The Model
402(1)
16.4.6.1 Paths
403(1)
16.4.6.2 Free Parameters
404(1)
16.4.6.3 Constraints
404(2)
16.4.6.4 Degrees of Freedom
406(1)
16.4.7 Drawing Conclusions
406(1)
16.4.8 Presentation
406(1)
16.5 Sulfur XANES from the Wreck of the Mary Rose
407(4)
16.5.1 The Paper
407(1)
16.5.2 The Scientific Question
408(1)
16.5.3 Why XAFS?
408(1)
16.5.4 Experimental Considerations
408(1)
16.5.5 Principal Component Analysis
409(1)
16.5.6 Linear Combination Analysis
409(1)
16.5.7 Drawing Conclusions
410(1)
16.5.8 Presentation
410(1)
16.6 Identification of Manganese-Based Particulates in Automobile Exhaust
411(4)
16.6.1 The Paper
411(1)
16.6.2 The Scientific Question
411(1)
16.6.3 Why XAFS?
412(1)
16.6.4 Experimental Considerations
412(1)
16.6.5 Principal Component Analysis and Target Transforms
413(1)
16.6.6 Linear Combination Analysis
413(1)
16.6.7 Fingerprinting
413(1)
16.6.8 Drawing Conclusions
414(1)
16.6.9 Presentation
414(1)
16.7 The Next Case Study: Yours
415(1)
References 416(1)
Appendix 417(2)
Index 419
Scott Calvin is the chair of the Division of Natural Science and Mathematics at Sarah Lawrence College, where he teaches innovative courses, including crazy ideas in physics, rocket science, and steampunk physics. He is also a member of the principal research team for beamline X-11B at the National Synchrotron Light Source. Since 1998, he has been using XAFS to study systems as diverse as solar cells, magnetic nanoparticles, soil samples, battery cathodes, analogues to atmospheric dust particles, and pigments used in 18th century painting. He received a PhD in physics from Hunter College of the City University of New York.