Muutke küpsiste eelistusi

Advances in Intelligent Data Analysis XIX: 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 2628, 2021, Proceedings 1st ed. 2021 [Pehme köide]

  • Formaat: Paperback / softback, 454 pages, kõrgus x laius: 235x155 mm, kaal: 718 g, 107 Illustrations, color; 31 Illustrations, black and white; XVI, 454 p. 138 illus., 107 illus. in color., 1 Paperback / softback
  • Sari: Information Systems and Applications, incl. Internet/Web, and HCI 12695
  • Ilmumisaeg: 13-Apr-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030742504
  • ISBN-13: 9783030742508
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 454 pages, kõrgus x laius: 235x155 mm, kaal: 718 g, 107 Illustrations, color; 31 Illustrations, black and white; XVI, 454 p. 138 illus., 107 illus. in color., 1 Paperback / softback
  • Sari: Information Systems and Applications, incl. Internet/Web, and HCI 12695
  • Ilmumisaeg: 13-Apr-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030742504
  • ISBN-13: 9783030742508
This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021.

The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats.

Modeling with Neural Networks.- Hyperspherical Weight Uncertainty in
Neural Networks.- Partially Monotonic Learning for Neural Networks.-
Multiple-Manifold Generation with an Ensemble GAN and Learned Noise Prior.-
Simple, Efficient and Convenient Decentralized Multi-Task Learning for Neural
Networks.- Deep Hybrid Neural Networks with Improved Weighted Word Embeddings
for Sentiment Analysis.- Explaining Neural Networks by Decoding Layer
Activations.- Analogical Embedding for Analogy-based Learning to Rank.-
HORUS-NER: A Multimodal Named Entity Recognition Framework for Noisy Data.-
Modeling with Statistical Learning.- Incremental Search Space Construction
for Machine Learning Pipeline Synthesis.- Adversarial Vulnerability of Active
Transfer Learning.- Revisiting Non-Specific Syndromic Surveillance.- Gradient
Ascent for Best Response Regression.- Intelligent Structural Damage
Detection: a Federated Learning Approach.- Composite surrogate for
likelihood-freeBayesian optimisation in high-dimensional settings of
activity-based transportation models.- Active Selection of Classification
Features.- Feature Selection for Hierarchical Multi-Label Classification.-
Bandit Algorithm for Both Unknown Best Position and Best Item Display on Web
Pages.- Performance prediction for hardware-software configurations: A
case study for video games.- avatar | Automated Feature Wrangling for Machine
Learning.- Modeling Language and Graphs.- Semantically Enriching Embeddings
of Highly In ectable Verbs for Improving Intent Detection in a Romanian Home
Assistant Scenario.- BoneBert: A BERT-based Automated Information Extraction
System of Radiology Reports for Bone Fracture Detection and Diagnosis.-
Linking the Dynamics of User Stance to the Structure of Online Discussions.-
Unsupervised Methods for the Study of Transformer Embeddings.- A Framework
for Authorial Clustering of Shorter Texts in Latent Semantic Spaces.- DeepGG:
a Deep Graph Generator.- SINr: fast computing of Sparse Interpretable Node
Representations is not a sin.- Detection of contextual anomalies in
attributed graphs.- Ising-Based Louvain Method: Clustering Large Graphs with
Specialized Hardware.- Modeling Special Data Formats.- Reducing Negative
Impact of Noise in Boolean Matrix Factorization with Association Rules.-
Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots.- muppets:
Multipurpose Table Segmentation.- SpLyCI: Integrating Spreadsheets by
Recognising and Solving Layout Constraints.- RTL: A Robust Time Series
Labeling Algorithm.- The Compromise of Data Privacy in Predictive
Performance.- Efficient Privacy Preserving Distributed K-Means for Non-IID
Data.