Muutke küpsiste eelistusi

E-raamat: Advances in Intelligent Data Analysis XIX: 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26-28, 2021, Proceedings

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021.

The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats.

Modeling with Neural Networks.- Hyperspherical Weight Uncertainty in
Neural Networks.- Partially Monotonic Learning for Neural Networks.-
Multiple-Manifold Generation with an Ensemble GAN and Learned Noise Prior.-
Simple, Efficient and Convenient Decentralized Multi-Task Learning for Neural
Networks.- Deep Hybrid Neural Networks with Improved Weighted Word Embeddings
for Sentiment Analysis.- Explaining Neural Networks by Decoding Layer
Activations.- Analogical Embedding for Analogy-based Learning to Rank.-
HORUS-NER: A Multimodal Named Entity Recognition Framework for Noisy Data.-
Modeling with Statistical Learning.- Incremental Search Space Construction
for Machine Learning Pipeline Synthesis.- Adversarial Vulnerability of Active
Transfer Learning.- Revisiting Non-Specific Syndromic Surveillance.- Gradient
Ascent for Best Response Regression.- Intelligent Structural Damage
Detection: a Federated Learning Approach.- Composite surrogate for
likelihood-freeBayesian optimisation in high-dimensional settings of
activity-based transportation models.- Active Selection of Classification
Features.- Feature Selection for Hierarchical Multi-Label Classification.-
Bandit Algorithm for Both Unknown Best Position and Best Item Display on Web
Pages.- Performance prediction for hardware-software configurations: A
case study for video games.- avatar | Automated Feature Wrangling for Machine
Learning.- Modeling Language and Graphs.- Semantically Enriching Embeddings
of Highly In ectable Verbs for Improving Intent Detection in a Romanian Home
Assistant Scenario.- BoneBert: A BERT-based Automated Information Extraction
System of Radiology Reports for Bone Fracture Detection and Diagnosis.-
Linking the Dynamics of User Stance to the Structure of Online Discussions.-
Unsupervised Methods for the Study of Transformer Embeddings.- A Framework
for Authorial Clustering of Shorter Texts in Latent Semantic Spaces.- DeepGG:
a Deep Graph Generator.- SINr: fast computing of Sparse Interpretable Node
Representations is not a sin.- Detection of contextual anomalies in
attributed graphs.- Ising-Based Louvain Method: Clustering Large Graphs with
Specialized Hardware.- Modeling Special Data Formats.- Reducing Negative
Impact of Noise in Boolean Matrix Factorization with Association Rules.-
Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots.- muppets:
Multipurpose Table Segmentation.- SpLyCI: Integrating Spreadsheets by
Recognising and Solving Layout Constraints.- RTL: A Robust Time Series
Labeling Algorithm.- The Compromise of Data Privacy in Predictive
Performance.- Efficient Privacy Preserving Distributed K-Means for Non-IID
Data.