|
|
1 | (18) |
|
Evolution of the PID Controller |
|
|
1 | (3) |
|
Components of the PID Controller |
|
|
4 | (6) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (2) |
|
Choice of Controller Type |
|
|
10 | (4) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
Nomenclature of the PID Controller |
|
|
14 | (1) |
|
Structures of the PID Controller |
|
|
14 | (5) |
|
|
15 | (1) |
|
|
15 | (2) |
|
Relationship between Parallel and Series types |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (16) |
|
|
19 | (1) |
|
Design Objectives - Speed Versus Stability |
|
|
19 | (1) |
|
|
20 | (3) |
|
The Ziegler-Nichols Methods |
|
|
23 | (7) |
|
|
23 | (2) |
|
The frequency response method |
|
|
25 | (4) |
|
The modified generalized frequency response method |
|
|
29 | (1) |
|
The Stability Limit Method |
|
|
30 | (3) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (64) |
|
|
35 | (1) |
|
Constraints of Classical PID Control |
|
|
35 | (1) |
|
|
36 | (3) |
|
PI control of first-order systems |
|
|
36 | (1) |
|
PID control of second-order systems |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
Gain and Phase Margin Design I: PI Controller |
|
|
40 | (12) |
|
|
41 | (4) |
|
|
45 | (7) |
|
Gain and Phase Margin Design II: PID Controller |
|
|
52 | (9) |
|
|
57 | (4) |
|
Linear Quadratic Control Design |
|
|
61 | (18) |
|
LQR solution for time-delay systems |
|
|
62 | (2) |
|
PI tuning for first-order modeling |
|
|
64 | (6) |
|
|
70 | (3) |
|
Extension to second-order modeling |
|
|
73 | (4) |
|
|
77 | (2) |
|
Composite PI-Adaptive Control Design |
|
|
79 | (20) |
|
|
80 | (2) |
|
PI control based on first-order dominant model |
|
|
82 | (1) |
|
Nonlinear adaptive control |
|
|
83 | (4) |
|
Passivity of dynamical systems |
|
|
87 | (2) |
|
|
89 | (10) |
|
|
99 | (90) |
|
|
99 | (2) |
|
Methods based on step response analysis |
|
|
100 | (1) |
|
Methods based on frequency response analysis |
|
|
101 | (1) |
|
|
101 | (10) |
|
Modeling from a step test |
|
|
103 | (4) |
|
|
107 | (4) |
|
|
111 | (17) |
|
|
113 | (3) |
|
Improved estimation accuracy |
|
|
116 | (6) |
|
Estimation of a general point |
|
|
122 | (2) |
|
Estimation of multiple points |
|
|
124 | (4) |
|
|
128 | (28) |
|
|
129 | (1) |
|
|
130 | (6) |
|
Assessment of Control Performance |
|
|
136 | (1) |
|
|
137 | (19) |
|
|
156 | (9) |
|
|
156 | (5) |
|
|
161 | (4) |
|
Frequency Response - Transfer Function Conversion |
|
|
165 | (6) |
|
Single and multiple lag processes |
|
|
166 | (2) |
|
|
168 | (3) |
|
Continuous Self-Tuning of PID Control |
|
|
171 | (18) |
|
Process estimation from load disturbance response |
|
|
173 | (8) |
|
|
181 | (8) |
|
|
189 | (26) |
|
|
189 | (1) |
|
The Modified Ziegler-Nichols Method |
|
|
190 | (2) |
|
Review of the BLT (Biggest Log-Modulus Tuning) |
|
|
192 | (1) |
|
Modified Ziegler-Nichols Method for Multi-Loop Processes |
|
|
193 | (3) |
|
Derivation of the Design Equations |
|
|
196 | (5) |
|
|
201 | (8) |
|
Extension to Cross-coupled Controllers |
|
|
209 | (6) |
|
|
215 | (20) |
|
|
215 | (1) |
|
|
215 | (10) |
|
Transducer characteristics |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
223 | (2) |
|
|
225 | (2) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
227 | (1) |
|
Auto-manual bumpless transfer |
|
|
228 | (1) |
|
Digital PID Implementation |
|
|
229 | (6) |
|
Selection of sampling interval |
|
|
230 | (1) |
|
|
231 | (4) |
A. Industrial Controllers |
|
235 | (16) |
|
|
235 | (3) |
|
A.2 Elsag Bailey Protonic 500/550 |
|
|
238 | (4) |
|
|
242 | (4) |
|
|
246 | (5) |
References |
|
251 | (12) |
Index |
|
263 | |