Muutke küpsiste eelistusi

E-raamat: Advances in PID Control

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Recently, a great deal of effort has been dedicated to capitalising on advances in mathematical control theory in conjunction with tried-and-tested classical control structures particularly with regard to the enhanced robustness and tighter control of modern PID controllers. Much of the research in this field and that of the operational autonomy of PID controllers has already been translated into useful new functions for industrial controllers. This book covers the important knowledge relating to the background, application, and design of, and advances in PID controllers in a unified and comprehensive treatment including:
Evolution and components of PID controllers
Classical and Modern PID controller design
Automatic Tuning
Multi-loop Control
Practical issues concerned with PID control
The book is intended to be useful to a wide spectrum of readers interested in PID control ranging from practising technicians and engineers to graduate and undergraduate students.
Introduction
1(18)
Evolution of the PID Controller
1(3)
Components of the PID Controller
4(6)
The Proportional part
5(2)
The Integral part
7(1)
The Derivative part
8(2)
Choice of Controller Type
10(4)
On/Off controller
11(1)
P controller
11(1)
PD controller
11(1)
PI controller
12(1)
PID controller
13(1)
Nomenclature of the PID Controller
14(1)
Structures of the PID Controller
14(5)
Parallel type
15(1)
Series type
15(2)
Relationship between Parallel and Series types
17(1)
Incremental type
18(1)
Classical Designs
19(16)
Introduction
19(1)
Design Objectives - Speed Versus Stability
19(1)
Trial and Error Method
20(3)
The Ziegler-Nichols Methods
23(7)
The step response method
23(2)
The frequency response method
25(4)
The modified generalized frequency response method
29(1)
The Stability Limit Method
30(3)
The Cohen-Coon Method
33(1)
The Tyreus-Luyben Method
34(1)
Modern Designs
35(64)
Introduction
35(1)
Constraints of Classical PID Control
35(1)
Pole Placement Design
36(3)
PI control of first-order systems
36(1)
PID control of second-order systems
37(1)
General case
38(1)
Dominant Pole Placement
39(1)
Gain and Phase Margin Design I: PI Controller
40(12)
The design method
41(4)
Simulation study
45(7)
Gain and Phase Margin Design II: PID Controller
52(9)
Simulation study
57(4)
Linear Quadratic Control Design
61(18)
LQR solution for time-delay systems
62(2)
PI tuning for first-order modeling
64(6)
Simulation study
70(3)
Extension to second-order modeling
73(4)
Robustness analysis
77(2)
Composite PI-Adaptive Control Design
79(20)
Problem formulation
80(2)
PI control based on first-order dominant model
82(1)
Nonlinear adaptive control
83(4)
Passivity of dynamical systems
87(2)
Simulation study
89(10)
Automatic Tuning
99(90)
Introduction
99(2)
Methods based on step response analysis
100(1)
Methods based on frequency response analysis
101(1)
Step Response Approach
101(10)
Modeling from a step test
103(4)
Simulation study
107(4)
Relay Feedback Approach
111(17)
Basic idea
113(3)
Improved estimation accuracy
116(6)
Estimation of a general point
122(2)
Estimation of multiple points
124(4)
On-line Relay Tuning
128(28)
Configuration
129(1)
Structure identification
130(6)
Assessment of Control Performance
136(1)
Controller design
137(19)
FFT on Relay Transients
156(9)
The FFT-Relay Method
156(5)
Simulation study
161(4)
Frequency Response - Transfer Function Conversion
165(6)
Single and multiple lag processes
166(2)
Second-order modeling
168(3)
Continuous Self-Tuning of PID Control
171(18)
Process estimation from load disturbance response
173(8)
PID adaptation
181(8)
Multi-loop Control
189(26)
Introduction
189(1)
The Modified Ziegler-Nichols Method
190(2)
Review of the BLT (Biggest Log-Modulus Tuning)
192(1)
Modified Ziegler-Nichols Method for Multi-Loop Processes
193(3)
Derivation of the Design Equations
196(5)
Simulation study
201(8)
Extension to Cross-coupled Controllers
209(6)
Practical Issues
215(20)
Introduction
215(1)
Non-linearities
215(10)
Transducer characteristics
216(2)
Friction
218(1)
Saturation
219(1)
Hysteresis
220(1)
Dead zone
221(1)
Process characteristics
222(1)
Gain scheduling
223(2)
Disturbances
225(2)
Set point changes
225(1)
Low frequency drift
225(1)
High frequency noise
226(1)
Operational Aspects
227(2)
Set point weighting
227(1)
Auto-manual bumpless transfer
228(1)
Digital PID Implementation
229(6)
Selection of sampling interval
230(1)
Discretization
231(4)
A. Industrial Controllers 235(16)
A.1 ABB Commander 351
235(3)
A.2 Elsag Bailey Protonic 500/550
238(4)
A.3 Foxboro 718PL/PR
242(4)
A.4 Honeywell UDC3300
246(5)
References 251(12)
Index 263