Muutke küpsiste eelistusi

Analog-to-digital Conversion 2010 ed. [Kõva köide]

  • Formaat: Hardback, 475 pages, kõrgus x laius x paksus: 234x156x26 mm, kaal: 1850 g, black & white illustrations
  • Ilmumisaeg: 01-Aug-2010
  • Kirjastus: Springer
  • ISBN-10: 9048188873
  • ISBN-13: 9789048188871
  • Kõva köide
  • Hind: 134,81 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 158,60 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 475 pages, kõrgus x laius x paksus: 234x156x26 mm, kaal: 1850 g, black & white illustrations
  • Ilmumisaeg: 01-Aug-2010
  • Kirjastus: Springer
  • ISBN-10: 9048188873
  • ISBN-13: 9789048188871
The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for every new design. Analog-to-Digital Conversion discusses the different analog-to-digital conversion principles: sampling, quantization, reference generation, Nyquist architectures and sigma-delta modulation. Analog-to-Digital Conversion presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed while reducing the power level.

A lot of background knowledge and practical tips complement the discussion of basic principles, which makes Analog-to-Digital Conversion also a reference for the experienced engineer.

Arvustused

Aus den Rezensionen: "... Studierende finden in dem aus didaktischer Sicht gut strukturierten Buch sowohl klar formulierte Grundlagen ... als auch spezifische technologische Details verschiedener Wandler und Prinzipien. Ein ... Kapitel mit Ubungen hilft mit, sich intensiver mit dem Gelesenen auseinanderzusetzen ... Erfahrene ... werden das Buch als Nachschlagewerk fur praktische Hinweise und fur die mathematischen Beschreibungen schatzen. Eine ausfuhrliche, verstandliche Ubersicht." (in: Bulletin VSE/VSE, 6/May/2011, Vol. 102, Issue 5, S. 94)

1 Introduction 1(4)
1.1 About this Book
3(2)
2 Components and Definitions 5(128)
2.1 Mathematical Tools
5(20)
2.1.1 The Fourier Transform
9(1)
2.1.2 Fourier Analysis
10(3)
2.1.3 Distortion
13(2)
2.1.4 Laplace Transform
15(4)
2.1.5 The z-transform
19(1)
2.1.6 Statistics
20(5)
2.2 Resistivity
25(8)
2.2.1 Temperature
28(1)
2.2.2 Voltage and Temperature Coefficient
29(1)
2.2.3 Measuring Resistance
29(1)
2.2.4 Electromigration
30(1)
2.2.5 Noise
31(2)
2.3 Maxwell Equations
33(14)
2.3.1 Inductors
37(1)
2.3.2 Energy in a Coil
38(1)
2.3.3 Straight Wire Inductance
38(2)
2.3.4 Skin Effect and Eddy Current
40(1)
2.3.5 Transformer
40(2)
2.3.6 Capacitors
42(1)
2.3.7 Energy in Capacitors
43(1)
2.3.8 Partial Charging
44(1)
2.3.9 Digital Power Consumption
45(1)
2.3.10 Coaxial Cable
45(2)
2.4 Semiconductors
47(15)
2.4.1 Semiconductor Resistivity
48(1)
2.4.2 Voltage and Temperature Coefficient
49(1)
2.4.3 Matching of Resistors
50(1)
2.4.4 MOS Capacitance
51(3)
2.4.5 Capacitance Between Layers
54(2)
2.4.6 Voltage and Temperature Coefficient
56(1)
2.4.7 Matching of Capacitors
56(1)
2.4.8 The pn-junction
56(4)
2.4.9 The Bipolar Transistor
60(2)
2.5 The MOS Transistor
62(17)
2.5.1 Weak Inversion
66(2)
2.5.2 Matching
68(1)
2.5.3 Drain Voltage Influence
69(1)
2.5.4 Large Signal and Small Signal
70(1)
2.5.5 High-frequency Behavior
71(2)
2.5.6 Gate Leakage
73(1)
2.5.7 Temperature Coefficient
73(2)
2.5.8 Noise
75(1)
2.5.9 Latch-up
76(1)
2.5.10 Enhancement and Depletion
77(1)
2.5.11 Models
78(1)
2.6 Network Theory
79(19)
2.6.1 Kirchhoff's Laws
79(1)
2.6.2 Two-port Networks
80(1)
2.6.3 Energy and Power
81(2)
2.6.4 Feedback
83(3)
2.6.5 Opamps and OTAs
86(2)
2.6.6 Differential Design
88(2)
2.6.7 Switched-capacitor Circuits
90(2)
2.6.8 Filters
92(6)
2.7 Electronic Circuits
98(35)
2.7.1 Classification of Amplifiers
98(2)
2.7.2 One-transistor Amplifier
100(2)
2.7.3 The Inverter
102(1)
2.7.4 Source Follower
103(1)
2.7.5 The Differential Pair
104(3)
2.7.6 Degeneration
107(1)
2.7.7 Current Mirror
107(2)
2.7.8 Darlington Pair
109(1)
2.7.9 Cascode and Regulated Cascode
110(3)
2.7.10 Single-stage Amplifier
113(1)
2.7.11 Miller Amplifier
114(4)
2.7.12 Choosing the W/L Ratios in a Miller Opamp
118(1)
2.7.13 Dominant-pole Amplifier
119(1)
2.7.14 Feedback in Electronic Circuits
120(2)
2.7.15 Bias Circuits
122(1)
2.7.16 Oscillators
123(10)
3 Sampling 133(22)
3.1 Sampling in Time and Frequency
133(13)
3.1.1 Folding Back of Spectra
137(3)
3.1.2 Sampling and Modulation
140(1)
3.1.3 Sampling of Noise
141(2)
3.1.4 Jitter of the Sampling Pulse
143(3)
3.2 Time-discrete Filtering
146(9)
3.2.1 FIR Filters
146(5)
3.2.2 Half-band Filters
151(1)
3.2.3 Down Sample Filter
152(1)
3.2.4 IIR Filters
153(2)
4 Sample and Hold 155(20)
4.1 Track-and-Hold and Sample-and-Hold Circuits
155(4)
4.2 Artifacts
159(1)
4.3 Capacitor and Switch Implementations
160(8)
4.3.1 Capacitor
160(1)
4.3.2 Switch Topologies
161(3)
4.3.3 Bottom Plate Sampling
164(1)
4.3.4 The CMOS Bootstrap Technique
165(2)
4.3.5 Buffer
167(1)
4.4 Track-and-Hold Circuit Topologies
168(7)
4.4.1 Basic Configurations
168(3)
4.4.4.2 Amplifying Track-and-Hold Circuit
171(1)
4.4.3 Correlated Double Sampling
171(1)
4.4.4 A Bipolar Example
172(1)
4.4.5 Distortion and Noise
173(2)
5 Quantization 175(16)
5.1 Linearity
177(3)
5.1.1 Integral Linearity
177(1)
5.1.2 Differential Linearity
178(2)
5.2 The Quantization Error
180(4)
5.2.1 One-bit Quantization
180(1)
5.2.2 2-6 bit Quantization
181(2)
5.2.3 7-bit and Higher Quantization
183(1)
5.3 Signal-to-Noise
184(7)
5.3.1 Related Definitions
187(1)
5.3.2 Non-uniform Quantization
187(1)
5.3.3 Dither
188(1)
5.3.4 DNL and SNR
189(2)
6 Reference Circuits 191(12)
6.1 General Requirements
191(1)
6.2 Bandgap Reference Circuits
192(9)
6.2.1 Bipolar Bandgap Circuit
196(1)
6.2.2 CMOS Bandgap Circuit
197(3)
6.2.3 Low-voltage Bandgap Circuits
200(1)
6.3 Alternative References
201(2)
7 Digital-to-Analog Conversion 203(46)
7.1 Unary and Binary Representation
203(6)
7.1.1 Digital Representation
205(2)
7.1.2 Physical Domain
207(2)
7.2 Digital-to-Analog Conversion Schemes
209(18)
7.2.1 DA Conversion in the Voltage Domain
209(4)
7.2.2 R-2R Ladders
213(1)
7.2.3 Digital-to-Analog Conversion in the Current Domain
214(6)
7.2.4 Semi-digital Filter/Converters
220(1)
7.2.5 DA Conversion in the Charge Domain
221(3)
7.2.6 DA Conversion in the Time Domain
224(3)
7.2.7 Class-D Amplifiers
227(1)
7.3 Accuracy
227(4)
7.3.1 Limits to Accuracy
227(4)
7.4 Methods to Improve Accuracy
231(8)
7.4.1 Current Calibration
233(1)
7.4.2 Dynamic Element Matching
234(1)
7.4.3 Data-weighted Averaging
235(4)
7.5 Digital-to-Analog Conversion: Implementation Examples
239(10)
7.5.1 Resistor Ladder Digital-to-Analog Converter
239(3)
7.5.2 Current Domain Digital-to-Analog Conversion
242(1)
7.5.3 A Comparison
243(1)
7.5.4 An Algorithmic Charge-based Digital-to-Analog Converter
244(5)
8 Analog-to-Digital Conversion 249(72)
8.1 The Comparator
251(13)
8.1.1 The Dynamics of Transistor Comparator
253(1)
8.1.2 Hysteresis
254(2)
8.1.3 Accuracy
256(2)
8.1.4 Metastability and Bit-Error Rate
258(1)
8.1.5 Kick-back
259(1)
8.1.6 Comparator Schematics
260(2)
8.1.7 Auto-zero Comparators
262(2)
8.2 Full-flash Converters
264(16)
8.2.1 Ladder Implementation
267(1)
8.2.2 Comparator Yield
267(5)
8.2.3 Decoder
272(2)
8.2.4 Averaging and Interpolation
274(3)
8.2.5 Technology Scaling for Full-flash Converters
277(1)
8.2.6 Folding Converter
277(3)
8.3 Sub-ranging Methods
280(4)
8.4 Pipeline Converters
284(5)
8.4.1 Error Sources in Pipeline Converters
286(2)
8.4.2 Digital Calibration
288(1)
8.5 1.5 Bit Pipeline Analog-to-Digital Converter
289(7)
8.5.1 Design of a Stage
291(2)
8.5.2 Redundancy
293(1)
8.5.3 Pipeline Variants
294(2)
8.6 Successive Approximation Converters
296(8)
8.6.1 Charge-redistribution Conversion
298(2)
8.6.2 Algorithmic Converters
300(4)
8.7 Linear Approximation Converters
304(1)
8.8 Time-interleaving Time-discrete Circuits
305(3)
8.9 An Implementation Example
308(6)
8.9.1 An Auto-zero Comparator
309(1)
8.9.2 Full-flash Analog-to-Digital Converter
310(1)
8.9.3 Successive-approximation Analog-to-Digital Converter
311(1)
8.9.4 Multi-step Analog-to-Digital Converter
312(1)
8.9.5 A Comparison
313(1)
8.10 Other Conversion Ideas
314(7)
8.10.1 Level-crossing Analog-to-Digital Conversion
314(1)
8.10.2 Asynchronous Conversion
315(1)
8.10.3 Time-related Conversion
316(2)
8.10.4 The Vernier/Nonius Principle
318(1)
8.10.5 The Floating-point Converter
318(3)
9 Sigma-delta Modulation 321(38)
9.1 Oversampling
321(4)
9.2 Noise Shaping
325(4)
9.3 Sigma-delta Modulation
329(5)
9.3.1 Sigma-delta Digital-to-Analog Conversion
334(1)
9.4 Time-discrete Sigma-delta Modulation
334(7)
9.4.1 A First Order Modulator
334(3)
9.4.2 A Second Order Modulator
337(2)
9.4.3 Cascaded Sigma-delta Modulator
339(2)
9.5 Time-continuous Sigma-delta Modulation
341(9)
9.5.1 A First-order Modulator
341(4)
9.5.2 Higher Order Sigma-delta Converters
345(3)
9.5.3 Time-discrete and Time-continuous Sigma Delta Conversion
348(2)
9.6 Multi-bit Sigma-delta Conversion
350(3)
9.7 Various Forms of Sigma-delta Modulation
353(6)
9.7.1 Complex Sigma-delta Modulation
353(1)
9.7.2 Asynchronous Sigma-delta Modulation
353(1)
9.7.3 Input Feed-forward Modulator
354(1)
9.7.4 Band-pass Sigma-delta Converter
355(1)
9.7.5 Sigma Delta Loop with Noise-shaping
356(1)
9.7.6 Incremental Sigma-delta Converter
356(3)
10 Characterization and Specification 359(10)
10.1 The Test Hardware
359(4)
10.2 Measurement Methods
363(5)
10.2.1 INL and DNL
363(2)
10.2.2 Harmonic Behavior
365(3)
10.3 Self Testing
368(1)
11 Technology 369(44)
11.1 Technology Roadmap
369(4)
11.1.1 Power Supply and Signal Swing
370(1)
11.1.2 Feature Size
371(1)
11.1.3 Process Options
372(1)
11.2 Variability: an Overview
373(2)
11.3 Deterministic Offsets
375(11)
11.3.1 Offset Caused by Electrical Differences
376(1)
11.3.2 Offset Caused by Lithography
377(1)
11.3.3 Proximity Effects
378(2)
11.3.4 Temperature Gradients
380(1)
11.3.5 Offset Caused by Stress
381(4)
11.3.6 Offset Mitigation
385(1)
11.4 Random Matching
386(12)
11.4.1 Random Fluctuations in Devices
386(3)
11.4.2 MOS Threshold Mismatch
389(3)
11.4.3 Current Mismatch in Strong and Weak Inversion
392(2)
11.4.4 Mismatch for Various Processes
394(2)
11.4.5 Application to Other Components
396(1)
11.4.6 Modeling Remarks
397(1)
11.5 Consequences for Design
398(5)
11.5.1 Analog design
398(1)
11.5.2 Digital Design
399(1)
11.5.3 Drift
400(1)
11.5.4 Limits of Power and Accuracy
401(2)
11.6 Packaging
403(3)
11.7 Substrate Noise
406(7)
12 System Aspects of Conversion 413(16)
12.1 System Aspects
415(8)
12.1.1 Specification of Functionality
416(2)
12.1.2 Signal Processing Strategy
418(2)
12.1.3 Input Circuits
420(2)
12.1.4 Conversion of Modulated Signals
422(1)
12.2 Comparing Converters
423(4)
12.3 Limits of Conversion
427(2)
Exercises 429(4)
Bibliography 433(14)
1 Introduction
433(1)
2 Components and Definitions
433(3)
3 Sampling
436(1)
4 Sample-and-Hold
436(1)
5 Quantization
437(1)
6 Reference Circuits
437(1)
7 Digital-to-Analog Conversion
438(2)
8 Analog-to-Digital Conversion
440(3)
9 Sigma-delta Conversion
443(1)
10 Characterization and Specification
444(1)
11 Physical Restrictions
444(2)
12 System Aspects
446(1)
Index 447