Muutke küpsiste eelistusi

Analog-to-Digital Conversion 2nd ed. 2013 [Kõva köide]

  • Formaat: Hardback, 566 pages, kõrgus x laius: 235x155 mm, kaal: 1063 g, 256 black & white illustrations, 206 colour illustrations, 63 black & white tables, biography
  • Ilmumisaeg: 11-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461413702
  • ISBN-13: 9781461413707
Teised raamatud teemal:
  • Kõva köide
  • Hind: 119,35 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 566 pages, kõrgus x laius: 235x155 mm, kaal: 1063 g, 256 black & white illustrations, 206 colour illustrations, 63 black & white tables, biography
  • Ilmumisaeg: 11-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461413702
  • ISBN-13: 9781461413707
Teised raamatud teemal:
With more than twice the number of exercises than the first edition, this revised and expanded textbook covers the key developments in analog-to-digital conversion in a pedagogical framework suited for both graduate-level courses and professionals.

This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-out aspects, to trade-offs on system level, complement the discussion of basic principles, making this book a valuable reference for the experienced engineer.
1 Introduction
1(4)
1.1 About This Book
3(2)
2 Components and Definitions
5(158)
2.1 Mathematical Tools
5(26)
2.1.1 Fourier Transform
9(2)
2.1.2 Fourier Analysis
11(3)
2.1.3 Distortion
14(4)
2.1.4 Laplace Transform
18(3)
2.1.5 Z-Transform
21(1)
2.1.6 Statistics
22(6)
2.1.7 Functions of Statistical Variables
28(3)
2.2 Resistivity
31(9)
2.2.1 Temperature
33(2)
2.2.2 Voltage and Temperature Coefficient
35(1)
2.2.3 Measuring Resistance
35(1)
2.2.4 Electromigration
36(1)
2.2.5 Noise
37(3)
2.3 Maxwell Equations
40(16)
2.3.1 Inductors
43(2)
2.3.2 Energy in a Coil
45(1)
2.3.3 Straight-Wire Inductance
45(2)
2.3.4 Skin Effect and Eddy Current
47(1)
2.3.5 Transformer
47(2)
2.3.6 Capacitors
49(1)
2.3.7 Energy in Capacitors
50(1)
2.3.8 Partial Charging
51(1)
2.3.9 Digital Power Consumption
52(2)
2.3.10 Coaxial Cable
54(2)
2.4 Semiconductors
56(18)
2.4.1 Semiconductor Resistivity
57(1)
2.4.2 Voltage and Temperature Coefficient
58(1)
2.4.3 Matching of Resistors
59(1)
2.4.4 pn-Junction
59(4)
2.4.5 Bipolar Transistor
63(3)
2.4.6 Darlington Pair
66(1)
2.4.7 MOS Capacitance
66(4)
2.4.8 Capacitance Between Layers
70(1)
2.4.9 Voltage and Temperature Coefficient
71(1)
2.4.10 Matching of Capacitors
71(1)
2.4.11 Capacitor Design
71(3)
2.5 MOS Transistor
74(20)
2.5.1 Threshold Voltage
78(2)
2.5.2 Weak Inversion
80(1)
2.5.3 Large Signal and Small Signal
81(1)
2.5.4 Drain-Voltage Influence
82(1)
2.5.5 Output Impedance
83(1)
2.5.6 Matching
84(2)
2.5.7 High-Frequency Behavior
86(1)
2.5.8 Gate Leakage
87(1)
2.5.9 Temperature Coefficient
88(1)
2.5.10 Noise
89(2)
2.5.11 Latch-Up
91(1)
2.5.12 Enhancement and Depletion
92(1)
2.5.13 Models
93(1)
2.6 Network Theory
94(25)
2.6.1 Energy and Power
94(3)
2.6.2 Kirchhoff's Laws
97(1)
2.6.3 Two-Port Networks
97(2)
2.6.4 Opamps and OTAs
99(2)
2.6.5 Differential Design
101(2)
2.6.6 Feedback
103(3)
2.6.7 Bode Plots
106(1)
2.6.8 Filters
107(3)
2.6.9 RLC Filters
110(3)
2.6.10 Sallen--Key 8m -- C Filters and Gyrators
113(3)
2.6.11 Switched-Capacitor Circuits
116(3)
2.7 Electronic Circuits
119(44)
2.7.1 Classification of Amplifiers
119(2)
2.7.2 One-Transistor Amplifier
121(2)
2.7.3 Inverter
123(1)
2.7.4 Source Follower
124(1)
2.7.5 Differential Pair
125(4)
2.7.6 Degeneration
129(1)
2.7.7 Mixers and Variable Gain Amplifiers
130(1)
2.7.8 Current Mirror
131(2)
2.7.9 Cascode and Regulated Cascode
133(4)
2.7.10 Single-Stage Amplifier
137(3)
2.7.11 Miller Amplifier
140(3)
2.7.12 Choosing the W/L Ratios in a Miller Opamp
143(3)
2.7.13 Dominant-Pole Amplifier
146(1)
2.7.14 Feedback in Electronic Circuits
146(2)
2.7.15 Bias Circuits
148(2)
2.7.16 Oscillators
150(13)
3 Sampling
163(34)
3.1 Sampling in Time and Frequency
163(21)
3.1.1 Aliasing
168(1)
3.1.2 SubSampling
169(1)
3.1.3 Sampling, Modulation and Chopping
170(3)
3.1.4 Nyquist Criterion
173(2)
3.1.5 Alias Filter
175(1)
3.1.6 Sampling of Noise
176(3)
3.1.7 Jitter of the Sampling Pulse
179(5)
3.2 Time-Discrete Filtering
184(13)
3.2.1 FIR Filters
184(6)
3.2.2 Half-Band Filters
190(1)
3.2.3 Down Sample Filter
190(2)
3.2.4 IIR Filters
192(5)
4 Sample-and-Hold
197(30)
4.1 Track-and-Hold and Sample-and-Hold Circuits
197(4)
4.2 Artifacts
201(3)
4.3 Capacitor and Switch Implementations
204(10)
4.3.1 Capacitor
204(1)
4.3.2 Switch Topologies
205(4)
4.3.3 Bottom Plate Sampling
209(1)
4.3.4 CMOS Bootstrap Techniques
210(2)
4.3.5 Buffering the Hold Capacitor
212(2)
4.4 Track-and-Hold Circuit Topologies
214(13)
4.4.1 Basic Configurations
214(3)
4.4.2 Amplifying Track-and-Hold Circuit
217(2)
4.4.3 Correlated Double Sampling
219(1)
4.4.4 Bipolar Examples
220(2)
4.4.5 Distortion and Noise
222(5)
5 Quantization
227(22)
5.1 Linearity
229(5)
5.1.1 Integral Linearity
229(2)
5.1.2 Differential Linearity
231(3)
5.2 Quantization Error
234(4)
5.2.1 One-Bit Quantization
234(1)
5.2.2 2-6 Bit Quantization
234(2)
5.2.3 7-Bit and Higher Quantization
236(2)
5.3 Signal-to-Noise
238(6)
5.3.1 Related Definitions
240(2)
5.3.2 Nonuniform Quantization
242(1)
5.3.3 Dither
242(2)
5.4 Modeling INL and DNL
244(5)
6 Reference Circuits
249(16)
6.1 General Requirements
249(3)
6.2 Bandgap Reference Circuits
252(9)
6.2.1 Bandgap Principle
252(2)
6.2.2 Artifacts of the Standard Circuit
254(2)
6.2.3 Bipolar Bandgap Circuit
256(1)
6.2.4 CMOS Bandgap Circuit
256(3)
6.2.5 Low-Voltage Bandgap Circuits
259(2)
6.3 Alternative References
261(4)
7 Digital-to-Analog Conversion
265(60)
7.1 Unary and Binary Representation
266(5)
7.1.1 Digital Representation
269(1)
7.1.2 Physical Domain
270(1)
7.2 Digital-to-Analog Conversion in the Voltage Domain
271(10)
7.2.1 Resistor Strings
271(2)
7.2.2 Dynamic Behavior of the Resistor Ladder
273(1)
7.2.3 Practical Issues in Resistor Ladders
274(4)
7.2.4 R-2R Ladders
278(3)
7.3 Digital-to-Analog Conversion in the Current Domain
281(10)
7.3.1 Current Steering Digital-to-Analog Converter
281(2)
7.3.2 Matrix Decoding
283(2)
7.3.3 Current Cell
285(3)
7.3.4 Performance Limits
288(2)
7.3.5 Semi-digital Filter/Converters
290(1)
7.4 Digital-to-Analog Conversion in the Charge Domain
291(4)
7.5 Digital-to-Analog Conversion in the Time Domain
295(4)
7.5.1 Class-D Amplifiers
298(1)
7.6 Accuracy
299(5)
7.6.1 Accuracy in Resistors Strings
299(2)
7.6.2 Accuracy in Current Source Arrays
301(3)
7.7 Methods to Improve Accuracy
304(9)
7.7.1 Current Calibration
306(1)
7.7.2 Dynamic Element Matching
307(2)
7.7.3 Data-Weighted Averaging
309(4)
7.8 Implementation Examples
313(12)
7.8.1 Resistor-Ladder Digital-to-Analog Converter
313(3)
7.8.2 Current-Domain Digital-to-Analog Conversion
316(2)
7.8.3 Comparison
318(1)
7.8.4 Algorithmic Charge-Based Digital-to-Analog Converter
319(6)
8 Analog-to-Digital Conversion
325(94)
8.1 Comparator
327(19)
8.1.1 Dynamic Behavior of the Comparator
330(1)
8.1.2 Hysteresis
331(2)
8.1.3 Accuracy
333(2)
8.1.4 Metastability and Bit Error Rate
335(1)
8.1.5 Kickback
336(2)
8.1.6 Comparator Schematics
338(5)
8.1.7 Auto-Zero Comparators
343(1)
8.1.8 Track-and-Hold Plus Comparator
344(2)
8.2 Full-Flash Converters
346(20)
8.2.1 Ladder Implementation
349(1)
8.2.2 Comparator Yield
350(6)
8.2.3 Decoder
356(2)
8.2.4 Averaging and Interpolation
358(2)
8.2.5 Frequency-Dependent Mismatch
360(2)
8.2.6 Technology Sealing for Full-Flash Converters
362(1)
8.2.7 Folding Converter
362(3)
8.2.8 Digital Output Power
365(1)
8.3 Subranging Methods
366(6)
8.3.1 Overrange
367(1)
8.3.2 Monkey Switching
368(4)
8.4 1-Bit Pipeline Analog-to-Digital Converters
372(8)
8.4.1 Error Sources in Pipeline Converters
376(2)
8.4.2 Reduced Radix Converters with Digital Calibration
378(2)
8.5 1.5 Bit Pipeline Analog-to-Digital Converter
380(9)
8.5.1 Design of an MDAC Stage
381(3)
8.5.2 Redundancy
384(1)
8.5.3 Pipeline Variants
385(4)
8.6 Successive Approximation Converters
389(9)
8.6.1 Charge-Redistribution Conversion
391(3)
8.6.2 Algorithmic Converters
394(4)
8.7 Linear Approximation Converters
398(2)
8.8 Time-Interleaving Time-Discrete Circuits
400(4)
8.9 Implementation Examples
404(6)
8.9.1 Full-Flash Analog-to-Digital Converter
405(2)
8.9.2 Successive-Approximation Analog-to-Digital Converter
407(1)
8.9.3 Multistep Analog-to-Digital Converter
407(2)
8.9.4 Comparison
409(1)
8.10 Other Conversion Proposals
410(9)
8.10.1 Level-Crossing Analog-to-Digital Conversion
410(1)
8.10.2 Feedback Asynchronous Conversion
411(1)
8.10.3 Mismatch Dominated Conversion
412(1)
8.10.4 Time-Related Conversion
413(2)
8.10.5 Vernier/Nonius Principle
415(1)
8.10.6 Floating-Point Converter
415(4)
9 Sigma--Delta Modulation
419(50)
9.1 Oversampling
420(3)
9.1.1 Oversampling in Analog-to-Digital Conversion
420(1)
9.1.2 Oversampling in Digital-to-Analog Conversion
421(2)
9.2 Noise Shaping
423(6)
9.2.1 Higher Order Noise Shaping
426(3)
9.3 Sigma--Delta Modulation
429(6)
9.3.1 Overload
432(2)
9.3.2 Sigma--Delta Digital-to-Analog Conversion
434(1)
9.4 Time-Discrete Sigma--Delta Modulation
435(10)
9.4.1 First-Order Modulator
435(2)
9.4.2 Cascade of Integrators in FeedBack or Feed-Forward
437(2)
9.4.3 Second-Order Modulator
439(2)
9.4.4 Circuit Design Considerations
441(2)
9.4.5 Cascaded Sigma--Delta Modulator
443(2)
9.5 Time-Continuous Sigma--Delta Modulation
445(11)
9.5.1 First-Order Modulator
445(4)
9.5.2 Higher-Order Sigma--Delta Converters
449(5)
9.5.3 Excess Loop Delay in Time-Continuous Sigma--Delta Conversion
454(1)
9.5.4 Latency
455(1)
9.6 Time-Discrete and Time-Continuous Sigma--Delta Conversion
456(3)
9.7 Multi-bit Sigma--Delta Conversion
459(3)
9.8 Various Forms of Sigma--Delta Modulation
462(7)
9.8.1 Complex Sigma--Delta Modulation
462(1)
9.8.2 Asynchronous Sigma--Delta Modulation
463(1)
9.8.3 Input Feed-Forward Modulator
463(1)
9.8.4 Band-Pass Sigma--Delta Converter
464(1)
9.8.5 Sigma--Delta Loop with Noise Shaping
465(1)
9.8.6 Incremental Sigma--Delta Converter
466(3)
10 Characterization and Specification
469(14)
10.1 Test Hardware
470(3)
10.2 Measurement Methods
473(6)
10.2.1 INL and DNL
473(3)
10.2.2 Harmonic Behavior
476(3)
10.3 Self Testing
479(4)
11 Technology
483(54)
11.1 Technology Road Map
483(6)
11.1.1 Power Supply and Signal Swing
484(2)
11.1.2 Feature Size
486(1)
11.1.3 Process Options
487(2)
11.2 Variability: An Overview
489(2)
11.3 Deterministic Offsets
491(16)
11.3.1 Offset Caused by Electrical Differences
492(2)
11.3.2 Offset Caused by Lithography
494(1)
11.3.3 Proximity Effects
495(1)
11.3.4 Implantation-Related Effects
496(3)
11.3.5 Temperature Gradients
499(1)
11.3.6 Offset Caused by Stress
500(4)
11.3.7 Offset Mitigation
504(3)
11.4 Random Matching
507(14)
11.4.1 Random Fluctuations in Devices
507(3)
11.4.2 MOS Threshold Mismatch
510(3)
11.4.3 Current Mismatch in Strong and Weak Inversion
513(2)
11.4.4 Mismatch for Various Processes
515(4)
11.4.5 Application to Other Components
519(1)
11.4.6 Modeling Remarks
520(1)
11.5 Consequences for Design
521(5)
11.5.1 Analog Design
521(1)
11.5.2 Digital Design
522(2)
11.5.3 Drift
524(1)
11.5.4 Limits of Power and Accuracy
525(1)
11.6 Packaging
526(4)
11.7 Substrate Noise
530(7)
12 System Aspects of Conversion
537(20)
12.1 System Aspects
539(8)
12.1.1 Specification of Functionality
541(1)
12.1.2 Signal Processing Strategy
542(2)
12.1.3 Input Circuits
544(2)
12.1.4 Conversion of Modulated Signals
546(1)
12.2 Comparing Converters
547(7)
12.3 Limits of Conversion
554(3)
References 557(16)
About the Author 573(2)
Index 575
Marcel Pelgrom received his B.EE, M.Sc, and PhD from Twente University, Enschede, The Netherlands. In 1979, he joined Philips Research Laboratories, where his research has covered topics such as Charge Coupled Devices, MOS matching properties, analog-to-digital conversion, digital image correlation, and various analog building block techniques. He has headed several project teams, and was a team leader for high-speed analog-to-digital conversion. From 1996 until 2003, he was a department head for Mixed-Signal Electronics. In addition to various activities concerning industry-academic relations, he is a research fellow in research on the edge of design and technology. In 2003, he spent a sabbatical in Stanford University where he served as a consulting professor. Since 2007, he has been a member of the technical staff at NXP Semiconductors. Dr. Pelgrom was an IEEE Distinguished Lecturer, has written over 40 publications, three book chapters, and holds 28 US patents. He currently lectures in the Philips Training Department at Twente University and for MEAD Inc.