Muutke küpsiste eelistusi

Applied Groundwater Modeling: Simulation of Flow and Advective Transport 2nd edition [Kõva köide]

(University of Montana, Missoula, USA), (U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI), (University of Wisconsin-Madison, USA)
  • Formaat: Hardback, 564 pages, kõrgus x laius: 235x191 mm, kaal: 1450 g
  • Ilmumisaeg: 19-Oct-2015
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0120581035
  • ISBN-13: 9780120581030
Teised raamatud teemal:
  • Formaat: Hardback, 564 pages, kõrgus x laius: 235x191 mm, kaal: 1450 g
  • Ilmumisaeg: 19-Oct-2015
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0120581035
  • ISBN-13: 9780120581030
Teised raamatud teemal:

The second edition of this title encompasses the numerous significant developments in groundwater modeling, since the 1st edition was published in 1992. The increased computational speed and capacity of present day multi-core computers as well as the availability of sophisticated graphical user interfaces (GUIs) and geographical information systems (GISs) have transformed groundwater modeling.

In this 2nd edition many of the important advances in applied groundwater modeling introduced since 1992 are discussed, along with the update to treatment of fundamentals of groundwater flow modeling covered in the 1st edition. The chapters on model calibration and forecasting (Chapters 9 and 10 in the 2nd edition) are entirely new and include discussion of new tools for parameter estimation and uncertainty analysis in forecast simulations

  • Explains how to formulate a conceptual model of a system and how to translate it into a numerical model
  • Includes the application of modeling principles with special attention to the finite difference flow codes PLASM and MODFLOW, and the finite-element code AQUIFEM-1
  • Covers model calibration, verification, and validation
  • Discusses pathline analysis for tracking contaminants with reference to newly developed particle tracking codes
  • Makes extensive use of case studies and problems

Arvustused

"The second edition of Applied Groundwater Modeling is a "must use" book in advanced undergraduate and graduate courses dealing with the practical application of groundwater models. It is also an outstanding reference book for professional groundwater scientists and engineers constructing models in the consulting, industrial, and governmental sectors." --Scott Bair, November-December issue of Groundwater

Muu info

This second edition provides an expanded discussion of the fundamentals of applied groundwater modeling focusing on finite-difference and finite-element models with updated coverage of particle tracking and advances in model calibration and uncertainty analysis
List of Figures xv
List of Tables liv
Preface lvii
Disclaimer lxiii
Acknowledgments lxv
Section 1 Modeling Fundamentals 1(114)
1 Introduction
3(24)
1.1 Motivation for Modeling
3(2)
1.2 What Is a Model?
5(4)
1.2.1 Physical Models
5(1)
1.2.2 Mathematical Models
5(4)
1.3 Purpose of Modeling
9(2)
1.3.1 Forecasting/Hindcasting Models
9(2)
1.3.2 Interpretative Models
11(1)
1.4 Limitations of Models
11(2)
1.4.1 Nonuniqueness
12(1)
1.4.2 Uncertainty
12(1)
1.5 Modeling Ethics
13(3)
1.5.1 Model Design
14(1)
1.5.2 Bias
14(1)
1.5.3 Presentation of Results
15(1)
1.5.4 Cost
15(1)
1.6 Modeling Workflow
16(4)
1.6.1 Steps in the Workflow
17(2)
1.6.2 Verification and Validation
19(1)
1.7 Common Modeling Errors
20(2)
1.8 Use of This Text
20(1)
1.9 Problems
21(1)
References
22(5)
Box 1.1 Data-Driven (Black-Box) Models
26(1)
2 Modeling Purpose and Conceptual Model
27(42)
2.1 Modeling Purpose
28(1)
2.2 Conceptual Model: Definition and General Features
29(6)
2.3 Components of a Conceptual Model
35(24)
2.3.1 Boundaries
35(2)
2.3.2 Hydrostratigraphy and Hydrogeological Properties
37(14)
2.3.3 Flow Direction and Sources and Sinks
51(3)
2.3.4 Groundwater Budget Components
54(3)
2.3.5 Ancillary Information
57(2)
2.4 Uncertainty in the Conceptual Model
59(1)
2.5 Common Modeling Errors
59(1)
2.6 Problems
60(3)
References
63(6)
Box 2.1 Geographical Information Systems (GIS)
33(9)
Box 2.2 Describing the Void Space
42(27)
3 Basic Mathematics and the Computer Code
69(46)
3.1 Introduction
70(1)
3.2 Governing Equation for Groundwater Flow
71(6)
3.2.1 Assumptions
71(1)
3.2.2 Derivation
71(6)
3.3 Boundary Conditions
77(1)
3.4 Analytical Models
78(7)
3.4.1 Analytical Solutions
78(2)
3.4.2 Analytic Element (AE) Models
80(5)
3.5 Numerical Models
85(11)
3.5.1 Finite Differences
86(3)
3.5.2 Finite Elements
89(2)
3.5.3 Control Volume Finite Differences
91(4)
3.5.4 Solution Methods
95(1)
3.6 Code Selection
96(6)
3.6.1 Code Verification
99(1)
3.6.2 Water Budget
99(1)
3.6.3 Track Record
100(1)
3.6.4 GUIs
101(1)
3.7 Code Execution
102(5)
3.7.1 Simulation Log
102(3)
3.7.2 Execution Time
105(1)
3.7.3 Closure Criteria and Solution Convergence
105(2)
3.8 Common Modeling Errors
107(1)
3.9 Problems
108(3)
References
111(6)
Box 3.1 The Hydraulic Conductivity Tensor
74(5)
Box 3.2 Insights from Analytical Solutions
79(36)
Section 2 Designing the Numerical Model 115(214)
4 Model Dimensionality and Setting Boundaries
117(64)
4.1 Spatial Dimensions
118(16)
4.1.1 Two-Dimensional Models
118(15)
4.1.2 Three-Dimensional Models
133(1)
4.2 Selecting Boundaries
134(11)
4.2.1 Physical Boundaries
136(8)
4.2.2 Hydraulic Boundaries
144(1)
43 Implementing Boundaries in a Numerical Model
145(14)
4.3.1 Setting Boundaries in the Grid/Mesh
145(2)
4.3.2 Specified Head Boundaries
147(1)
4.3.3 Specified Flow Boundaries
148(4)
4.3.4 Head-dependent Boundaries
152(7)
4.4 Extracting Local Boundary Conditions from a Regional Model
159(3)
4.5 Simulating the Water Table
162(8)
4.5.1 Fixed Nodes
164(1)
4.5.2 Movable Nodes
165(1)
4.5.3 Variably Saturated Codes
166(4)
4.6 Common Modeling Errors
170(1)
4.7 Problems
170(6)
References
176(5)
Box 4.1 Two-Dimensional or Three-Dimensional-More about the D-F Approximation
122(3)
Box 4.2 Profile Models
125(3)
Box 4.3 Spreadsheet Solution of a Finite-Difference Profile Model
128(13)
Box 4.4 The Freshwater-Seawater Interface
141(12)
Box 4.5 Large Water Budget Errors Arising from an HDB
153(14)
Box 4.6 What Controls the Water Table?
167(14)
5 Spatial Discretization and Parameter Assignment
181(76)
5.1 Discretizing Space
182(19)
5.1.1 Orienting the Grid/Mesh
184(1)
5.1.2 Finite-Difference Grid
184(11)
5.1.3 Finite-Element Mesh
195(6)
5.2 Horizontal Nodal Spacing
201(7)
5.2.1 Solution Accuracy
202(1)
5.2.2 Calibration Targets
202(1)
5.2.3 Perimeter Boundary Configuration
203(1)
5.2.4 Heterogeneity
203(1)
5.2.5 Faults, Conduits, and Barriers
203(2)
5.2.6 Internal Sources and Sinks
205(3)
5.3 Model Layers
208(14)
5.3.1 Vertical Discretization
209(5)
5.3.2 Layer Types
214(1)
5.3.3 Layer Elevations
215(1)
5.3.4 Pinchouts and Faults
216(1)
5.3.5 Dipping Hydrogeologic Units
217(5)
5.4 Parameters
222(14)
5.4.1 Material Property Parameters
223(7)
5.4.2 Hydrologic Parameters
230(6)
5.5 Parameter Assignment
236(5)
5.5.1 General Principles
236(1)
5.5.2 Assigning Storage Parameters to Layers
237(1)
5.5.3 Populating the Grid or Mesh
237(4)
5.6 Parameter Uncertainty
241(2)
5.7 Common Modeling Errors
243(1)
5.8 Problems
244(5)
References
249(8)
Box 5.1 Numerical Error Inherent to Irregular FD Grids
190(10)
Box 5.2 Vertical Anisotropy and the Transformed Section
200(11)
Box 5.3 Upscaling Hydraulic Conductivity: Layered Heterogeneity and Vertical Anisotropy
211(21)
Box 5.4 When Infiltration becomes Recharge
232(25)
6 More on Sources and Sinks
257(46)
6.1 Introduction
258(1)
6.2 Pumping and Injection Wells
259(11)
6.2.1 FD Well Nodes
262(1)
6.2.2 FE Well Nodes and Multinode Wells
262(2)
6.2.3 Multinode Wells in FD Models
264(6)
6.3 Areally Distributed Sources and Sinks
270(2)
6.4 Drains and Springs
272(1)
6.5 Streams
273(6)
6.6 Lakes
279(4)
6.7 Wetlands
283(8)
6.8 Common Modeling Errors
291(1)
6.9 Problems
292(4)
References
296(7)
Box 6.1 Guidelines for Nodal Spacing around a Well Node
267(18)
Box 6.2 Watershed Modeling
285(4)
Box 6.3 Surface Water Modeling
289(14)
7 Steady-State and Transient Simulations
303(26)
7.1 Steady-State Simulations
303(4)
7.1.1 Starting Heads
304(1)
7.1.2 Boundary Conditions
304(1)
7.1.3 Characterizing Steady-State Conditions
305(2)
7.2 Steady State or Transient?
307(3)
7.3 Transient Simulations
310(2)
7.4 Initial Conditions
312(2)
7.5 Perimeter Boundary Conditions for Transient Simulations
314(2)
7.6 Discretizing Time
316(4)
7.6.1 Time Steps and Stress Periods
316(2)
7.6.2 Selecting the Time Step
318(2)
7.7 Characterizing Transient Conditions
320(4)
7.8 Common Modeling Errors
324(1)
7.9 Problems
324(2)
References
326(3)
Section 3 Particle Tracking, Calibration, Forecasting, and Uncertainty Analysis 329(164)
8 Particle Tracking
331(44)
8.1 Introduction
331(7)
8.2 Velocity Interpolation
338(8)
8.2.1 Effect of Spatial Discretization
338(2)
8.2.2 Effect of Temporal Discretization
340(1)
8.2.3 Interpolation Methods
341(5)
8.3 Tracking Schemes
346(3)
8.3.1 Semianalytical Method
347(1)
8.3.2 Numerical Methods
348(1)
8.4 Weak Sinks
349(2)
8.5 Applications
351(13)
8.5.1 Flow System Analysis
357(1)
8.5.2 Capture Zones and Contributing Areas
358(5)
8.5.3 Advective Transport of Contaminants
363(1)
8.6 Particle Tracking Codes
364(1)
8.7 Common Errors in Particle Tracking
365(1)
8.8 Problems
366(4)
References
370(5)
Box 8.1 Effective Porosity
332(3)
Box 8.2 Flow Nets
335(25)
Box 8.3 More on Capture Zones and Contributing Areas
360(15)
9 Model Calibration: Assessing Performance
375(68)
9.1 Introduction
376(2)
9.2 Limitations of History Matching
378(2)
9.3 Calibration Targets
380(5)
9.3.1 Head Targets
381(1)
9.3.2 Flux Targets
382(2)
9.3.3 Ranking Targets
384(1)
9.4 Manual History Matching
385(11)
9.4.1 Comparing Model Output to Observations
385(8)
9.4.2 Choosing the Parameters to Adjust
393(1)
9.4.3 Manual Trial-and-Error History Matching
394(1)
9.4.4 Limitations of a Manual Approach
395(1)
9.5 Parameter Estimation: Automated Trial-and-Error History Matching
396(15)
9.5.1 Weighting the Targets
400(2)
9.5.2 Finding a Best Fit
402(8)
9.5.3 Statistical Analysis
410(1)
9.6 Highly Parameterized Model Calibration with Regularized Inversion
411(15)
9.6.1 Increasing the Number of Calibration Parameters
412(2)
9.6.2 Stabilizing Parameter Estimation
414(10)
9.6.3 Speeding the Parameter Estimation Process
424(2)
9.7 A Workflow for Calibration and Model Performance Evaluation
426(5)
9.8 Common Modeling Errors
431(1)
9.9 Problems
432(4)
References
436(7)
Box 9.1 Historical Context for Parameter Estimation
397(11)
Box 9.2 Tips for Running a Parameter Estimation Code
408(8)
Box 9.3 Tips for Effective Pilot Point Parameterization
416(5)
Box 9.4 A "Singularly Valuable Decomposition"-Benefits for Groundwater Modeling
421(6)
Box 9.5 Code/Model Verification and Model Validation
427(3)
Box 9.6 Additional Parameter Estimation Tools
430(13)
10 Forecasting and Uncertainty Analysis
443(50)
10.1 Introduction
443(4)
10.2 Characterizing Uncertainty
447(6)
10.3 Addressing Uncertainty
453(5)
10.4 Basic Uncertainty Analysis
458(11)
10.4.1 Scenario Modeling
458(2)
10.4.2 Linear Uncertainty Analysis
460(9)
10.5 Advanced Uncertainty Analysis
469(11)
10.5.1 Analysis Using One Conceptualization
469(8)
10.5.2 Analysis Using Multiple Conceptualizations
477(3)
10.6 Reporting Forecast Uncertainty
480(1)
10.7 Evaluating Forecasts: Postaudits
481(2)
10.8 Common Modeling Errors
483(1)
10.9 Problems
483(2)
References
485(10)
Box 10.1 Historical Overview of Uncertainty Analysis in Groundwater Modeling
446(9)
Box 10.2 Travel Time in Heterogeneous Aquifers: Impossible to Forecast Accurately?
455(13)
Box 10.3 Cost-Benefit Analyses of Future Data Collection
468(4)
Box 10.4 Using Monte Carlo Methods to Represent Forecast Uncertainty
472(21)
Section 4 The Modeling Report and Advanced Topics 493(42)
11 The Modeling Report, Archive, and Review
495(20)
11.1 Introduction
495(3)
11.2 The Modeling Report
498(11)
11.2.1 Title
498(1)
11.2.2 Executive Summary and Abstract
499(1)
11.2.3 Introduction
500(1)
11.2.4 Hydrogeologic Setting and Conceptual Model
500(2)
11.2.5 Numerical Model
502(4)
11.2.6 Forecasting Simulations and Uncertainty Analysis
506(1)
11.2.7 Discussion
507(1)
11.2.8 Model Assumptions, Simplifications, and Limitations
508(1)
11.2.9 Summary and Conclusions
508(1)
11.2.10 References Cited
508(1)
11.2.11 Appendices
509(1)
11.3 Archiving the Model
509(1)
11.4 Reviewing the Modeling Report
510(3)
11.5 Common Errors in Report/Archive Preparation and Review
513(1)
11.6 Problems
513(1)
References
514(1)
12 Beyond Basic Modeling Concepts
515(20)
12.1 Introduction
515(3)
12.2 Complex Groundwater Flow Processes
518(4)
12.2.1 Flow through Fractures and Conduits
518(1)
12.2.2 Aquifer Compaction
518(1)
12.2.3 Variably Saturated Flow
519(1)
12.2.4 Variable Density Flow
520(1)
12.2.5 Multiphase Flow
521(1)
12.2.6 Linked and Coupled Models
521(1)
12.3 Transport Processes
522(1)
12.4 Surface Water Processes
523(1)
12.5 Stochastic Groundwater Modeling
524(1)
12.6 Decision-Support and Optimization
525(1)
12.7 Final Comments
526(1)
References
527(8)
Index 535
By Mary P. Anderson, and William W. Woessner