Muutke küpsiste eelistusi

Array Processing: Kronecker Product Beamforming 2019 ed. [Kõva köide]

  • Formaat: Hardback, 189 pages, kõrgus x laius: 235x155 mm, kaal: 477 g, 1 Illustrations, black and white; XI, 189 p. 1 illus., 1 Hardback
  • Sari: Springer Topics in Signal Processing 18
  • Ilmumisaeg: 08-Mar-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030155994
  • ISBN-13: 9783030155995
Teised raamatud teemal:
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 189 pages, kõrgus x laius: 235x155 mm, kaal: 477 g, 1 Illustrations, black and white; XI, 189 p. 1 illus., 1 Hardback
  • Sari: Springer Topics in Signal Processing 18
  • Ilmumisaeg: 08-Mar-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030155994
  • ISBN-13: 9783030155995
Teised raamatud teemal:
The focus of this book is on array processing and beamforming with Kronecker products. It considers a large family of sensor arrays that allow the steering vector to be decomposed as a Kronecker product of two steering vectors of smaller virtual arrays. Instead of directly designing a global beamformer for the original array, once the steering vector has been decomposed, smaller virtual beamformers are designed and separately optimized for each virtual array. This means the matrices that need to be inverted are smaller, which increases the robustness of the beamformers, and reduces the size of the observations.





The book explains how to perform beamforming with Kronecker product filters using an unconventional approach. It shows how the Kronecker product formulation can be used to derive fixed, adaptive, and differential beamformers with remarkable flexibility. Furthermore, it demonstrates how fixed and adaptive beamformers can be intelligently combined, optimally exploiting theadvantages of both. The problem of spatiotemporal signal enhancement is also addressed, and readers will learn how to perform Kronecker product filtering in this context.
Introduction.- Problem Formulation with Uniform Linear Arrays.- Beamforming with Uniform Linear Arrays.- Generalization with Uniform Linear Arrays.- Approach with Nonuniform Linear Arrays.- Approach with Rectangular Arrays.- Spatiotemporal Signal Enhancement.