Muutke küpsiste eelistusi

E-raamat: Array Processing: Kronecker Product Beamforming

  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The focus of this book is on array processing and beamforming with Kronecker products. It considers a large family of sensor arrays that allow the steering vector to be decomposed as a Kronecker product of two steering vectors of smaller virtual arrays. Instead of directly designing a global beamformer for the original array, once the steering vector has been decomposed, smaller virtual beamformers are designed and separately optimized for each virtual array. This means the matrices that need to be inverted are smaller, which increases the robustness of the beamformers, and reduces the size of the observations.





The book explains how to perform beamforming with Kronecker product filters using an unconventional approach. It shows how the Kronecker product formulation can be used to derive fixed, adaptive, and differential beamformers with remarkable flexibility. Furthermore, it demonstrates how fixed and adaptive beamformers can be intelligently combined, optimally exploiting theadvantages of both. The problem of spatiotemporal signal enhancement is also addressed, and readers will learn how to perform Kronecker product filtering in this context.
Introduction.- Problem Formulation with Uniform Linear Arrays.- Beamforming with Uniform Linear Arrays.- Generalization with Uniform Linear Arrays.- Approach with Nonuniform Linear Arrays.- Approach with Rectangular Arrays.- Spatiotemporal Signal Enhancement.