Muutke küpsiste eelistusi

Astrophysical Techniques 7th edition [Kõva köide]

  • Formaat: Hardback, 450 pages, kõrgus x laius: 254x178 mm, kaal: 1060 g, 8 Tables, black and white; 194 Line drawings, black and white; 44 Halftones, black and white; 238 Illustrations, black and white
  • Ilmumisaeg: 28-Jul-2020
  • Kirjastus: CRC Press
  • ISBN-10: 1138590169
  • ISBN-13: 9781138590168
  • Formaat: Hardback, 450 pages, kõrgus x laius: 254x178 mm, kaal: 1060 g, 8 Tables, black and white; 194 Line drawings, black and white; 44 Halftones, black and white; 238 Illustrations, black and white
  • Ilmumisaeg: 28-Jul-2020
  • Kirjastus: CRC Press
  • ISBN-10: 1138590169
  • ISBN-13: 9781138590168
"Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics. Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors. The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar. Key Features: Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more Presents the background theory and operating practice of state-of-the-art detectors and instruments Fully updated to contain the latest technology and research developments"--

Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics.

Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors.

The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar.

Key Features:

  • Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more
  • Presents the background theory and operating practice of state-of-the-art detectors and instruments
    • Fully updated to contain the latest technology and research developments
  • Preface xiii
    Author xv
    Chapter 1 Detectors
    1(226)
    1.1 Optical Detection
    1(9)
    1.1.1 Introduction
    1(1)
    1.1.2 Detector Types
    1(1)
    1.1.3 The Eye
    2(1)
    1.1.4 Semiconductors
    3(3)
    1.1.4.1 The Photoelectric Effect
    6(2)
    1.1.5 A Detector Index
    8(1)
    1.1.6 Detector Parameters
    8(1)
    1.1.7 Cryostats
    9(1)
    1.1.8 Charge-Coupled Devices (CCDs)
    10(1)
    1.1.8.1 CCDs
    10(15)
    1.1.8.2 Charge Injection Devices (CIDs)
    25(1)
    1.1.8.3 CCDs - The Future
    25(1)
    1.1.9 Avalanche Photodiodes (APDs)
    26(1)
    1.1.9.1 Photodiodes
    26(2)
    1.1.9.2 Avalanche Photodiode
    28(2)
    1.1.9.3 Single Photon Avalanche Photodiodes
    30(1)
    1.1.10 Photography
    30(1)
    1.1.11 Photomultipliers (PMTs)
    30(2)
    1.1.12 Superconducting Tunnel Junction (STJ) Detectors
    32(1)
    1.1.13 Microwave Kinetic Inductance Detectors (MKIDs) or Kinetic Inductance Detectors (KIDs)
    32(1)
    1.1.14 Future Possibilities
    33(2)
    1.1.15 Infrared Detectors
    35(1)
    1.1.15.1 Photoconductive Cells
    36(1)
    1.1.15.2 Bolometers
    37(2)
    1.1.15.3 Other Types of Detectors
    39(2)
    1.1.15.4 Astronomical Applications
    41(4)
    1.1.16 Ultraviolet Detectors
    45(2)
    1.1.16.1 Applications
    47(1)
    1.1.17 Noise, Uncertainties, Errors, Precision and Accuracy
    48(1)
    1.1.17.1 Intrinsic Noise
    49(1)
    1.1.17.2 Signal Noise
    50(1)
    1.1.17.3 Digitisation
    51(1)
    1.1.17.4 Errors and Uncertainties in Data Reduction, Analysis, and Presentation
    51(5)
    1.1.18 Telescopes
    56(1)
    1.1.18.1 Telescopes from the Beginning
    56(2)
    1.1.18.2 Optical Theory
    58(19)
    1.1.19 Telescope Designs
    77(1)
    1.1.19.1 Background
    77(3)
    1.1.19.2 Designs
    80(10)
    1.1.20 Telescopes in Space
    90(1)
    1.1.21 Mountings
    91(3)
    1.1.22 Real-Time Atmospheric Compensation
    94(3)
    1.1.22.1 Sampling System
    97(3)
    1.1.22.2 Wavefront Sensing
    100(2)
    1.1.22.3 Wavefront Correction
    102(2)
    1.1.23 Future Developments
    104(4)
    1.1.24 Observing Domes, Enclosures and Sites
    108(1)
    1.2 Radio and Microwave Detection
    109(1)
    1.2.1 Introduction
    110(1)
    1.2.2 Detectors and Receivers
    111(1)
    1.2.2.1 Detectors
    111(3)
    1.2.2.2 Receivers
    114(3)
    1.2.3 Radio Telescopes
    117(11)
    1.2.3.1 Construction
    128(1)
    1.2.3.2 Future
    129(2)
    1.3 X-Ray and Gamma-Ray Detection
    131(28)
    1.3.1 Introduction
    131(1)
    1.3.2 Detectors
    132(1)
    1.3.2.1 Geiger Counters
    132(1)
    1.3.2.2 Proportional Counters
    133(1)
    1.3.2.3 Scintillation Detectors
    134(2)
    1.3.2.4 Pair Production Detectors
    136(1)
    1.3.2.5 Gas Scintillation Proportional Counters
    136(1)
    1.3.2.6 Compton Interaction Detectors
    136(1)
    1.3.2.7 Solid-State Detectors
    137(2)
    1.3.2.8 MicroChannel Plates
    139(2)
    1.3.2.9 Cerenkov Detectors
    141(1)
    1.3.2.10 Future Possibilities
    141(1)
    1.3.3 Shielding
    142(1)
    1.3.4 Imaging
    143(1)
    1.3.4.1 Collimation
    143(3)
    1.3.4.2 Coincidence Detectors
    146(1)
    1.3.4.3 Occultation
    146(1)
    1.3.4.4 Reflecting Telescopes
    146(5)
    1.3.5 Resolution and Image Identification
    151(2)
    1.3.6 Spectroscopy
    153(1)
    1.3.6.1 Grating Spectrometers
    153(3)
    1.3.6.2 Bragg Spectrometers
    156(2)
    1.3.7 Polarimetry
    158(1)
    1.3.8 Observing Platforms
    158(1)
    1.4 Cosmic Ray Detectors
    159(12)
    1.4.1 Background
    159(1)
    1.4.2 Detectors
    160(1)
    1.4.2.1 Real-Time Methods
    161(3)
    1.4.2.2 Residual Track Detectors
    164(1)
    1.4.2.3 Indirect Detectors
    164(3)
    1.4.3 Arrays
    167(2)
    1.4.4 Correction Factors
    169(1)
    1.4.4.1 Atmospheric Effects
    169(1)
    1.4.4.2 Solar Effects
    169(1)
    1.4.4.3 Terrestrial Magnetic Field
    170(1)
    1.5 Neutrino Detectors
    171(15)
    1.5.1 Background
    171(3)
    1.5.2 Neutrino Detectors
    174(1)
    1.5.2.1 Direct Cerenkov Detectors
    174(6)
    1.5.2.2 Indirect Cerenkov Detectors
    180(1)
    1.5.2.3 Radiochemical Detectors
    180(3)
    1.5.2.4 Scintillator-Based Detectors
    183(2)
    1.5.2.5 Acoustic Detectors
    185(1)
    1.5.2.6 Indirect Detectors
    185(1)
    1.5.2.7 Other Types of Detectors
    185(1)
    1.6 Gravitational Radiation
    186(27)
    1.6.1 The Quite Remarkable GW150914
    186(4)
    1.6.2 Introduction
    190(3)
    1.6.3 Detectors
    193(2)
    1.6.3.1 Direct Resonant Detectors
    195(1)
    1.6.3.2 Direct, Non-Resonant Detectors
    195(10)
    1.6.3.3 Pulsar Timing Arrays
    205(6)
    1.6.3.4 Indirect Detectors
    211(1)
    1.6.3.5 The Future
    211(2)
    1.7 Dark Matter and Dark Energy Detection
    213(14)
    1.7.1 Introduction
    213(1)
    1.7.1.1 Dark Matter
    214(2)
    1.7.1.2 Dark Energy
    216(1)
    1.7.2 Dark Matter and Dark Energy Detectors
    216(1)
    1.7.2.1 Non-Baryonic Dark Matter - Direct Detectors
    216(4)
    1.7.2.2 Non-Baryonic Dark Matter - Indirect Detectors
    220(2)
    1.7.2.3 Non-Baryonic Dark Matter - Making Your Own
    222(1)
    1.7.2.4 Dark Energy Detectors
    223(4)
    Chapter 2 Imaging
    227(60)
    2.1 The Inverse Problem
    227(4)
    2.1.1 Deconvolution
    227(4)
    2.2 Photography
    231(1)
    2.2.1 Requiem for a Well-Loved Friend
    231(1)
    2.3 Electronic Imaging
    232(1)
    2.3.1 Introduction
    232(1)
    2.3.2 Television and Related Systems
    232(1)
    2.3.3 Image Intensifies
    232(1)
    2.3.4 Photon Counting Imaging Systems
    233(1)
    2.4 Scanning
    233(3)
    2.5 Interferometry
    236(25)
    2.5.1 Introduction
    236(1)
    2.5.2 Michelson Optical Stellar Interferometer
    237(9)
    2.5.3 Michelson Radio Interferometer
    246(4)
    2.5.4 Aperture Synthesis
    250(6)
    2.5.5 Data Processing
    256(2)
    2.5.6 Intensity Interferometer
    258(3)
    2.6 Speckle Interferometry
    261(3)
    2.7 Occultations
    264(9)
    2.7.1 Background
    264(4)
    2.7.2 Techniques
    268(2)
    2.7.3 Analysis
    270(1)
    2.7.4 Stellar Coronagraphs
    270(3)
    2.8 Radar
    273(9)
    2.8.1 Introduction
    273(1)
    2.8.2 Theoretical Principles
    274(1)
    2.8.2.1 Basic Radar Systems
    274(3)
    2.8.2.2 Synthetic Aperture Radar Systems
    277(2)
    2.8.3 Equipment
    279(1)
    2.8.4 Data Analysis
    280(1)
    2.8.5 Ground Penetrating Radar
    281(1)
    2.8.6 Meteors
    282(1)
    2.9 Electronic Images
    282(5)
    2.9.1 Image Formats
    282(1)
    2.9.2 I mage Compression
    282(1)
    2.9.3 Image Processing
    283(1)
    2.9.3.1 Grey Scaling
    284(1)
    2.9.3.2 Image Combination
    284(1)
    2.9.3.3 Spatial Filtering
    284(1)
    2.9.3.4 Ready-Made Computer Packages
    285(2)
    Chapter 3 Photometry
    287(26)
    3.1 Photometry
    287(17)
    3.1.1 Background
    287(1)
    3.1.1.1 Introduction
    287(1)
    3.1.1.2 Magnitudes
    288(2)
    3.1.2 Filter Systems
    290(6)
    3.1.3 Stellar Parameters
    296(8)
    3.2 Photometers
    304(9)
    3.2.1 Instruments
    304(1)
    3.2.1.1 Introduction
    304(1)
    3.2.1.2 Photographic Photometry
    304(1)
    3.2.1.3 CCD and Photoelectric Photometers
    304(1)
    3.2.2 Observing Techniques
    305(1)
    3.2.3 Data Reduction and Analysis
    306(2)
    3.2.4 High-Speed Photometry
    308(1)
    3.2.5 Exoplanets
    309(4)
    Chapter 4 Spectroscopy
    313(48)
    4.1 Spectroscopy
    313(25)
    4.1.1 Introduction
    313(1)
    4.1.2 Diffraction Gratings
    313(10)
    4.1.3 Prisms
    323(2)
    4.1.4 Interferometers
    325(1)
    4.1.4.1 Fabry-Perot Interferometer
    326(5)
    4.1.4.2 Michelson Interferometer
    331(6)
    4.1.5 Fibre-Optics
    337(1)
    4.2 Spectroscopes
    338(23)
    4.2.1 Basic Design Considerations
    338(7)
    4.2.2 Prism-Based Spectroscopes
    345(1)
    4.2.3 Grating Spectroscopes
    346(5)
    4.2.4 Integral Field Spectroscopy
    351(2)
    4.2.5 Multi-Object Spectroscopy
    353(2)
    4.2.6 Techniques of Spectroscopy
    355(3)
    4.2.7 Exoplanets
    358(2)
    4.2.8 Future Developments
    360(1)
    Chapter 5 Other Techniques
    361(70)
    5.1 Astrometry
    361(13)
    5.1.1 Introduction
    361(1)
    5.1.2 Background
    362(1)
    5.1.2.1 Coordinate Systems
    362(2)
    5.1.2.2 Position Angle and Separation
    364(1)
    5.1.3 Transit Telescopes
    365(1)
    5.1.4 Photographic Zenith Tube and the Impersonal Astrolabe
    366(1)
    5.1.5 Micrometers
    367(1)
    5.1.6 Astrographs and Other Telescopes
    367(1)
    5.1.7 Interferometers
    368(1)
    5.1.8 Space-Based Systems
    369(1)
    5.1.9 Detectors
    370(1)
    5.1.10 Measurement and Reduction
    371(2)
    5.1.11 Sky Surveys and Catalogues
    373(1)
    5.1.12 Exoplanets
    373(1)
    5.2 Polarimetry
    374(18)
    5.2.1 Background
    374(1)
    5.2.1.1 Stokes' Parameters
    374(3)
    5.2.2 Optical Components for Polarimetry
    377(1)
    5.2.2.1 Birefringence
    377(3)
    5.2.2.2 Polarisers
    380(3)
    5.2.2.3 Converters
    383(3)
    5.2.2.4 Depolarisers
    386(1)
    5.2.3 Polarimeters
    387(1)
    5.2.3.1 Photoelectric Polarimeters
    388(3)
    5.2.4 Data Reduction and Analysis
    391(1)
    5.3 Solar Studies
    392(19)
    5.3.1 Introduction
    394(1)
    5.3.2 Solar Telescopes - Part 1
    394(1)
    5.3.2.1 Binoculars
    394(1)
    5.3.2.2 Telescopes
    395(3)
    5.3.3 Solar Telescopes - Part 2
    398(2)
    5.3.4 Spectrohelioscope
    400(1)
    5.3.5 Narrow Band Filters
    401(6)
    5.3.6 Coronagraph
    407(1)
    5.3.7 Pyrheliometer/Radiometer
    408(1)
    5.3.8 Solar Oscillations
    409(1)
    5.3.9 Other Solar Observing Methods
    409(2)
    5.4 Magnetometry
    411(10)
    5.4.1 Background
    411(1)
    5.4.1.1 Zeeman Effect
    411(5)
    5.4.2 Magnetometers
    416(4)
    5.4.3 Data Reduction and Analysis
    420(1)
    5.5 Experimental Astrophysics
    421(1)
    5.6 Computers and the Internet
    422(4)
    5.6.1 Introduction
    422(1)
    5.6.2 Digital Sky Surveys and Catalogues
    423(1)
    5.6.3 Virtual Observatories
    424(1)
    5.6.4 Management of Large Data Samples
    425(1)
    5.7 Astronomy and the Real World
    426(5)
    5.7.1 Introduction
    426(1)
    5.7.2 Outreach/Education
    426(1)
    5.7.2.1 Outreach
    426(1)
    5.7.2.2 Education
    427(1)
    5.7.3 Pro-Am Collaborations and Citizen Science
    428(1)
    5.7.4 Citizen Science
    429(2)
    Epilogue 431(2)
    Bibliography 433(4)
    Index 437
    Chris is currently Professor Emeritus at the University of Hertfordshire and a freelance writer of astrophysics text books. From 1987 to 2001 he was Director of the University's Observatory at Bayfordbury and from 1996 to 2001 also Head of the Division of Physics and Astronomy. He took early retirement in 2001 in order to concentrate on his writing interests. Chris has written sixteen books as sole author and contributed to another dozen or so, as well as writing hundreds of articles covering interests ranging from popular to specialist research.