Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 113,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 466 pages
  • Ilmumisaeg: 27-Jul-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429956997

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics.

Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors.

The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar.

Key Features:











Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more





Presents the background theory and operating practice of state-of-the-art detectors and instruments





Fully updated to contain the latest technology and research developments
Preface xiii
Author xv
Chapter 1 Detectors
1(226)
1.1 Optical Detection
1(109)
1.1.1 Introduction
1(1)
1.1.2 Detector Types
1(1)
1.1.3 The Eye
2(1)
1.1.4 Semiconductors
3(3)
1.1.4.1 The Photoelectric Effect
6(2)
1.1.5 A Detector Index
8(1)
1.1.6 Detector Parameters
8(1)
1.1.7 Cryostats
9(1)
1.1.8 Charge-Coupled Devices (CCDs)
10(1)
1.1.8.1 CCDs
10(15)
1.1.8.2 Charge Injection Devices (CIDs)
25(1)
1.1.8.3 CCDs -- The Future
25(1)
1.1.9 Avalanche Photodiodes (APDs)
26(1)
1.1.9.1 Photodiodes
26(2)
1.1.9.2 Avalanche Photodiode
28(2)
1.1.9.3 Single Photon Avalanche Photodiodes
30(1)
1.1.10 Photography
30(1)
1.1.11 Photomultipliers (PMTs)
30(2)
1.1.12 Superconducting Tunnel Junction (STJ) Detectors
32(1)
1.1.13 Microwave Kinetic Inductance Detectors (MKIDs) or Kinetic Inductance Detectors (KIDs)
32(1)
1.1.14 Future Possibilities
33(2)
1.1.15 Infrared Detectors
35(1)
1.1.15.1 Photoconductive Cells
36(1)
1.1.15.2 Bolometers
37(2)
1.1.15.3 Other Types of Detectors
39(2)
1.1.15.4 Astronomical Applications
41(4)
1.1.16 Ultraviolet Detectors
45(2)
1.1.16.1 Applications
47(1)
1.1.17 Noise, Uncertainties, Errors, Precision and Accuracy
48(1)
1.1.17.1 Intrinsic Noise
49(1)
1.1.17.2 Signal Noise
50(1)
1.1.17.3 Digitisation
51(1)
1.1.17.4 Errors and Uncertainties in Data Reduction, Analysis, and Presentation
51(5)
1.1.18 Telescopes
56(1)
1.1.18.1 Telescopes from the Beginning
56(2)
1.1.18.2 Optical Theory
58(19)
1.1.19 Telescope Designs
77(1)
1.1.19.1 Background
77(3)
1.1.19.2 Designs
80(10)
1.1.20 Telescopes in Space
90(1)
1.1.21 Mountings
91(3)
1.1.22 Real-Ti me Atmospheric Compensation
94(3)
1.1.22.1 Sampling System
97(3)
1.1.22.2 Wavefront Sensing
100(2)
1.1.22.3 Wavefront Correction
102(2)
1.1.23 Future Developments
104(4)
1.1.24 Observing Domes, Enclosures and Sites
108(2)
1.2 Radio and Microwave Detection
110(21)
1.2.1 Introduction
110(1)
1.2.2 Detectors and Receivers
111(1)
1.2.2.1 Detectors
111(3)
1.2.2.2 Receivers
114(3)
1.2.3 Radio Telescopes
117(11)
1.2.3.1 Construction
128(1)
1.2.3.2 Future
129(2)
1.3 X-Ray and Gamma-Ray Detection
131(28)
1.3.1 Introduction
131(1)
1.3.2 Detectors
132(1)
1.3.2.1 Geiger Counters
132(1)
1.3.2.2 Proportional Counters
133(1)
1.3.2.3 Scintillation Detectors
134(2)
1.3.2.4 Pair Production Detectors
136(1)
1.3.2.5 Gas Scintillation Proportional Counters
136(1)
1.3.2.6 Compton Interaction Detectors
136(1)
1.3.2.7 Solid-State Detectors
137(2)
1.3.2.8 MicroChannel Plates
139(2)
1.3.2.9 Cerenkov Detectors
141(1)
1.3.2.10 Future Possibilities
141(1)
1.3.3 Shielding
142(1)
1.3.4 Imaging
143(1)
1.3.4.1 Collimation
143(3)
1.3.4.2 Coincidence Detectors
146(1)
1.3.4.3 Occultation
146(1)
1.3.4.4 Reflecting Telescopes
146(5)
1.3.5 Resolution and Image Identification
151(2)
1.3.6 Spectroscopy
153(1)
1.3.6.1 Grating Spectrometers
153(3)
1.3.6.2 Bragg Spectrometers
156(2)
1.3.7 Polarimetry
158(1)
1.3.8 Observing Platforms
158(1)
1.4 Cosmic Ray Detectors
159(12)
1.4.1 Background
159(1)
1.4.2 Detectors
160(1)
1.4.2.1 Real-Time Methods
161(3)
1.4.2.2 Residual Track Detectors
164(1)
1.4.2.3 Indirect Detectors
164(3)
1.4.3 Arrays
167(2)
1.4.4 Correction Factors
169(1)
1.4.4.1 Atmospheric Effects
169(1)
1.4.4.2 Solar Effects
169(1)
1.4.4.3 Terrestrial Magnetic Field
170(1)
1.5 Neutrino Detectors
171(15)
1.5.1 Background
171(3)
1.5.2 Neutrino Detectors
174(1)
1.5.2.1 Direct Cerenkov Detectors
174(6)
1.5.2.2 Indirect Cerenkov Detectors
180(1)
1.5.2.3 Radiochemical Detectors
180(3)
1.5.2.4 Scintillator-Based Detectors
183(2)
1.5.2.5 Acoustic Detectors
185(1)
1.5.2.6 Indirect Detectors
185(1)
1.5.2.7 Other Types of Detectors
185(1)
1.6 Gravitational Radiation
186(27)
1.6.1 The Quite Remarkable GW150914
186(4)
1.6.2 Introduction
190(3)
1.6.3 Detectors
193(2)
1.6.3.1 Direct Resonant Detectors
195(1)
1.6.3.2 Direct, Non-Resonant Detectors
195(10)
1.6.3.3 Pulsar Timing Arrays
205(6)
1.6.3.4 Indirect Detectors
211(1)
1.6.3.5 The Future
211(2)
1.7 Dark Matter and Dark Energy Detection
213(14)
1.7.1 Introduction
213(1)
1.7.1.1 Dark Matter
214(2)
1.7.1.2 Dark Energy
216(1)
1.7.2 Dark Matter and Dark Energy Detectors
216(1)
1.7.2.1 Non-Baryonic Dark Matter -- Direct Detectors
216(4)
1.7.2.2 Non-Baryonic Dark Matter -- Indirect Detectors
220(2)
1.7.2.3 Non-Baryonic Dark Matter -- Making Your Own
222(1)
1.7.2.4 Dark Energy Detectors
223(4)
Chapter 2 Imaging
227(60)
2.1 The Inverse Problem
227(4)
2.1.1 Deconvolution
227(4)
2.2 Photography
231(1)
2.2.1 Requiem for a Well-Loved Friend
231(1)
2.3 Electronic Imaging
232(1)
2.3.1 Introduction
232(1)
2.3.2 Television and Related Systems
232(1)
2.3.3 Image Intensifies
232(1)
2.3.4 Photon Counting Imaging Systems
233(1)
2.4 Scanning
233(3)
2.5 Interferometry
236(25)
2.5.1 Introduction
236(1)
2.5.2 Michelson Optical Stellar Interferometer
237(9)
2.5.3 Michelson Radio Interferometer
246(4)
2.5.4 Aperture Synthesis
250(6)
2.5.5 Data Processing
256(2)
2.5.6 Intensity Interferometer
258(3)
2.6 Speckle Interferometry
261(3)
2.7 Occultations
264(9)
2.7.1 Background
264(4)
2.7.2 Techniques
268(2)
2.7.3 Analysis
270(1)
2.7.4 Stellar Coronagraphs
270(3)
2.8 Radar
273(9)
2.8.1 Introduction
273(1)
2.8.2 Theoretical Principles
274(1)
2.8.2.1 Basic Radar Systems
274(3)
2.8.2.2 Synthetic Aperture Radar Systems
277(2)
2.8.3 Equipment
279(1)
2.8.4 Data Analysis
280(1)
2.8.5 Ground Penetrating Radar
281(1)
2.8.6 Meteors
282(1)
2.9 Electronic Images
282(5)
2.9.1 Image Formats
282(1)
2.9.2 Image Compression
282(1)
2.9.3 Image Processing
283(1)
2.9.3.1 Grey Scaling
284(1)
2.9.3.2 Image Combination
284(1)
2.9.3.3 Spatial Filtering
284(1)
2.9.3.4 Ready-Made Computer Packages
285(2)
Chapter 3 Photometry
287(26)
3.1 Photometry
287(17)
3.1.1 Background
287(1)
3.1.1.1 Introduction
287(1)
3.1.1.2 Magnitudes
288(2)
3.1.2 Filter Systems
290(6)
3.1.3 Stellar Parameters
296(8)
3.2 Photometers
304(9)
3.2.1 Instruments
304(1)
3.2.1.1 Introduction
304(1)
3.2.1.2 Photographic Photometry
304(1)
3.2.1.3 CCD and Photoelectric Photometers
304(1)
3.2.2 Observing Techniques
305(1)
3.2.3 Data Reduction and Analysis
306(2)
3.2.4 High-Speed Photometry
308(1)
3.2.5 Exoplanets
309(4)
Chapter 4 Spectroscopy
313(48)
4.1 Spectroscopy
313(25)
4.1.1 Introduction
313(1)
4.1.2 Diffraction Gratings
313(10)
4.1.3 Prisms
323(2)
4.1.4 Interferometers
325(1)
4.1.4.1 Fabry-Perot Interferometer
326(5)
4.1.4.2 Michelson Interferometer
331(6)
4.1.5 Fibre-Optics
337(1)
4.2 Spectroscopes
338(23)
4.2.1 Basic Design Considerations
338(7)
4.2.2 Prism-Based Spectroscopes
345(1)
4.2.3 Grating Spectroscopes
346(5)
4.2.4 Integral Field Spectroscopy
351(2)
4.2.5 Multi-Object Spectroscopy
353(2)
4.2.6 Techniques of Spectroscopy
355(3)
4.2.7 Exoplanets
358(2)
4.2.8 Future Developments
360(1)
Chapter 5 Other Techniques
361(70)
5.1 Astrometry
361(13)
5.1.1 Introduction
361(1)
5.1.2 Background
362(1)
5.1.2.1 Coordinate Systems
362(2)
5.1.2.2 Position Angle and Separation
364(1)
5.1.3 Transit Telescopes
365(1)
5.1.4 Photographic Zenith Tube and the Impersonal Astrolabe
366(1)
5.1.5 Micrometers
367(1)
5.1.6 Astrographs and Other Telescopes
367(1)
5.1.7 Interferometers
368(1)
5.1.8 Space-Based Systems
369(1)
5.1.9 Detectors
370(1)
5.1.10 Measurement and Reduction
371(2)
5.1.11 Sky Surveys and Catalogues
373(1)
5.1.12 Exoplanets
373(1)
5.2 Polarimetry
374(18)
5.2.1 Background
374(1)
5.2.1.1 Stokes' Parameters
374(3)
5.2.2 Optical Components for Polarimetry
377(1)
5.2.2.1 Birefringence
377(3)
5.2.2.2 Polarisers
380(3)
5.2.2.3 Converters
383(3)
5.2.2.4 Depolarisers
386(1)
5.2.3 Polarimeters
387(1)
5.2.3.1 Photoelectric Polarimeters
388(3)
5.2.4 Data Reduction and Analysis
391(1)
5.3 Solar Studies
392(19)
5.3.1 Introduction
394(1)
5.3.2 Solar Telescopes -- Part 1
394(1)
5.3.2.1 Binoculars
394(1)
5.3.2.2 Telescopes
395(3)
5.3.3 Solar Telescopes -- Part 2
398(2)
5.3.4 Spectrohelioscope
400(1)
5.3.5 Narrow Band Filters
401(6)
5.3.6 Coronagraph
407(1)
5.3.7 Pyrheliometer/Radiometer
408(1)
5.3.8 Solar Oscillations
409(1)
5.3.9 Other Solar Observing Methods
409(2)
5.4 Magnetometry
411(10)
5.4.1 Background
411(1)
5.4.1.1 Zeeman Effect
411(5)
5.4.2 Magnetometers
416(4)
5.4.3 Data Reduction and Analysis
420(1)
5.5 Experimental Astrophysics
421(1)
5.6 Computers and the Internet
422(4)
5.6.1 Introduction
422(1)
5.6.2 Digital Sky Surveys and Catalogues
423(1)
5.6.3 Virtual Observatories
424(1)
5.6.4 Management of Large Data Samples
425(1)
5.7 Astronomy and the Real World
426(5)
5.7.1 Introduction
426(1)
5.7.2 Outreach/Education
426(1)
5.7.2.1 Outreach
426(1)
5.7.2.2 Education
427(1)
5.7.3 Pro-Am Collaborations and Citizen Science
428(1)
5.7.4 Citizen Science
429(2)
Epilogue 431(2)
Bibliography 433(4)
Index 437
Chris is currently Professor Emeritus at the University of Hertfordshire and a freelance writer of astrophysics text books. From 1987 to 2001 he was Director of the University's Observatory at Bayfordbury and from 1996 to 2001 also Head of the Division of Physics and Astronomy. He took early retirement in 2001 in order to concentrate on his writing interests. Chris has written sixteen books as sole author and contributed to another dozen or so, as well as writing hundreds of articles covering interests ranging from popular to specialist research.