Muutke küpsiste eelistusi

Automated Machine Learning: Methods, Systems, Challenges 2019 ed. [Kõva köide]

Edited by , Edited by , Edited by
  • Formaat: Hardback, 219 pages, kõrgus x laius: 235x155 mm, kaal: 609 g, 45 Illustrations, color; 9 Illustrations, black and white; XIV, 219 p. 54 illus., 45 illus. in color., 1 Hardback
  • Sari: The Springer Series on Challenges in Machine Learning
  • Ilmumisaeg: 28-May-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030053172
  • ISBN-13: 9783030053178
  • Kõva köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 219 pages, kõrgus x laius: 235x155 mm, kaal: 609 g, 45 Illustrations, color; 9 Illustrations, black and white; XIV, 219 p. 54 illus., 45 illus. in color., 1 Hardback
  • Sari: The Springer Series on Challenges in Machine Learning
  • Ilmumisaeg: 28-May-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030053172
  • ISBN-13: 9783030053178
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. 

Arvustused

This interesting collection should be useful for AutoML researchers seeking an overview and comprehensive bibliography. (Anoop Malaviya, Computing Reviews, June 14, 2021)

Part I AutoML Methods
1 Hyperparameter Optimization
3(32)
Matthias Feurer
Frank Hutter
2 Meta-Learning
35(28)
Joaquin Vanschoren
3 Neural Architecture Search
63(18)
Thomas Elsken
Jan Hendrik Metzen
Frank Hutter
Part II AutoML Systems
4 Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA
81(16)
Lars Kotthoff
Chris Thornton
Holger H. Hoos
Frank Hutter
Kevin Leyton-Brown
5 Hyperopt-Sklearn
97(16)
Brent Komer
James Bergstra
Chris Eliasmith
6 Auto-sklearn: Efficient and Robust Automated Machine Learning
113(22)
Matthias Feurer
Aaron Klein
Katharina Eggensperger
Jost Tobias Springenberg
Manuel Blum
Frank Hutter
7 Towards Automatically-Tuned Deep Neural Networks
135(16)
Hector Mendoza
Aaron Klein
Matthias Feurer
Jost Tobias Springenberg
Matthias Urban
Michael Burkart
Maximilian Dippel
Marius Lindauer
Frank Hutter
8 TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning
151(10)
Randal S. Olson
Jason H. Moore
9 The Automatic Statistician
161(16)
Christian Steinruecken
Emma Smith
David Janz
James Lloyd
Zoubin Ghahramani
Part III AutoML Challenges
10 Analysis of the AutoML Challenge Series 2015-2018
177
Isabelle Guyon
Lisheng Sun-Hosoya
Marc Boulle
Hugo Jair Escalante
Sergio Escalera
Zhengying Liu
Damir Jajetic
Bisakha Ray
Mehreen Saeed
Michele Sebag
Alexander Statnikov
Wei-Wei Tu
Evelyne Viegas