Muutke küpsiste eelistusi

E-raamat: Automated Machine Learning: Methods, Systems, Challenges

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. 

Arvustused

This interesting collection should be useful for AutoML researchers seeking an overview and comprehensive bibliography. (Anoop Malaviya, Computing Reviews, June 14, 2021)

Part I AutoML Methods
1 Hyperparameter Optimization
3(32)
Matthias Feurer
Frank Hutter
2 Meta-Learning
35(28)
Joaquin Vanschoren
3 Neural Architecture Search
63(18)
Thomas Elsken
Jan Hendrik Metzen
Frank Hutter
Part II AutoML Systems
4 Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA
81(16)
Lars Kotthoff
Chris Thornton
Holger H. Hoos
Frank Hutter
Kevin Leyton-Brown
5 Hyperopt-Sklearn
97(16)
Brent Komer
James Bergstra
Chris Eliasmith
6 Auto-sklearn: Efficient and Robust Automated Machine Learning
113(22)
Matthias Feurer
Aaron Klein
Katharina Eggensperger
Jost Tobias Springenberg
Manuel Blum
Frank Hutter
7 Towards Automatically-Tuned Deep Neural Networks
135(16)
Hector Mendoza
Aaron Klein
Matthias Feurer
Jost Tobias Springenberg
Matthias Urban
Michael Burkart
Maximilian Dippel
Marius Lindauer
Frank Hutter
8 TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning
151(10)
Randal S. Olson
Jason H. Moore
9 The Automatic Statistician
161(16)
Christian Steinruecken
Emma Smith
David Janz
James Lloyd
Zoubin Ghahramani
Part III AutoML Challenges
10 Analysis of the AutoML Challenge Series 2015-2018
177
Isabelle Guyon
Lisheng Sun-Hosoya
Marc Boulle
Hugo Jair Escalante
Sergio Escalera
Zhengying Liu
Damir Jajetic
Bisakha Ray
Mehreen Saeed
Michele Sebag
Alexander Statnikov
Wei-Wei Tu
Evelyne Viegas