Muutke küpsiste eelistusi

Basic Concepts in Computational Physics Softcover reprint of the original 2nd ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 409 pages, kõrgus x laius: 235x155 mm, kaal: 652 g, XVI, 409 p., 1 Paperback / softback
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319801031
  • ISBN-13: 9783319801032
  • Pehme köide
  • Hind: 53,33 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 62,74 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 409 pages, kõrgus x laius: 235x155 mm, kaal: 652 g, XVI, 409 p., 1 Paperback / softback
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319801031
  • ISBN-13: 9783319801032

This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes.

The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text.

Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.

Some Basic Remarks.- Part I Deterministic Methods.- Numerical
Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary
Differential Equations Initial Value Problems.- The Double Pendulum.-
Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary
Value Problems.- The One-Dimensional Stationary Heat Equation.- The
One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential
Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.-
Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The
ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and
Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data
Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving
Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of
Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase
Transitions.- Fractional Integrals and Derivatives in1D.- Least Squares Fit.-
Deterministic Optimization.
Ewald Schachinger is a Professor in the Institute for Theoretical and Computational Physics in Graz University of Technology, Austria.  Benjamin A. Stickler is a Professor in the Institute of Theoretical Physics at the University of Duisburg-Essen, Germany.