Muutke küpsiste eelistusi

E-raamat: Basic Concepts in Computational Physics

  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Mar-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319272658
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Mar-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319272658

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This new edition is a concise introduction tothe basic methods of computational physics. Readers will discover the benefits of numerical methodsfor solving complex mathematical problems and for the direct simulation of physical processes.The book is divided into two main parts: Deterministic methods and stochasticmethods in computational physics. Based on concrete problems, the firstpart discusses numerical differentiation and integration, as well as the treatment of ordinarydifferential equations. This is extended by a brief introduction to the numerics of partial differential equations. Thesecond part deals with the generation of random numbers, summarizes the basics of stochastics, andsubsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. Thefinal two chapters discuss data analysis and stochastic optimization. All this is again motivated andaugmented by applications from physics. In addition, the book offers a number of

appendices to provide thereader with information on topics not discussed in the main text.Numerous problems with worked-out solutions, chapter introductions andsummaries, together with a clear and application-oriented style support thereader. Ready to use C++ codes are provided online.

Some Basic Remarks.- Part I Deterministic Methods.- Numerical Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary Differential Equations - Initial Value Problems.- The Double Pendulum.- Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary Value Problems.- The One-Dimensional Stationary Heat Equation.- The One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.- Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase Transitions.- Fractional Integrals and Derivatives in

1D.- Least Squares Fit.- Deterministic Optimization.
Some Basic Remarks.- Part I Deterministic Methods.- Numerical
Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary
Differential Equations Initial Value Problems.- The Double Pendulum.-
Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary
Value Problems.- The One-Dimensional Stationary Heat Equation.- The
One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential
Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.-
Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The
ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and
Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data
Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving
Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of
Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase
Transitions.- Fractional Integrals and Derivatives in1D.- Least Squares Fit.-
Deterministic Optimization.
Ewald Schachinger is a Professor in the Institute for Theoretical and Computational Physics in Graz University of Technology, Austria.  Benjamin A. Stickler is a Professor in the Institute of Theoretical Physics at the University of Duisburg-Essen, Germany.