Muutke küpsiste eelistusi

Best Map Projections [Kõva köide]

  • Formaat: Hardback, 197 pages, kõrgus x laius: 235x155 mm, 60 Illustrations, color; 7 Illustrations, black and white; XXIII, 197 p. 67 illus., 60 illus. in color., 1 Hardback
  • Ilmumisaeg: 23-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031783336
  • ISBN-13: 9783031783333
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 197 pages, kõrgus x laius: 235x155 mm, 60 Illustrations, color; 7 Illustrations, black and white; XXIII, 197 p. 67 illus., 60 illus. in color., 1 Hardback
  • Ilmumisaeg: 23-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031783336
  • ISBN-13: 9783031783333

This book presents the most condensed information about the theory of distortion theory developed by N.A. Tissot. It considers some of the issues of this theory to finding the best projections. Various criteria for ideal projections are analyzed. In finding an ideal projection using the Airy criterion for an arbitrary mapping region is solved by the variational method using the Euler–Ostrogradsky system of equations under natural boundary conditions. The same method is applied to a set of projections in which the sum of the extremal scale factors is equal to 2. It is shown that for these projections, the area distortions are quantities of the second order of smallness, while the linear distortions are quantities of the first order of smallness. The problem of finding the best projections using the Chebyshev criterion has been studied. Airy, Postel, Gauss–Kruger, and Markov projections are considered in detail.

Introduction.- Map projections and their distortionsMap projections and
their distortions.- The problem of finding the best projections.- Ideal
projection according to the Airy criterion.- The best projection from a set
of close-to-equal-area projections.- Airy projection.- GaussKruger
projection.- Arithmetic mean principle for the GaussKruger
projection.- Ideal and best projections according to Chebyshevs
criterion.- Appendixes.