Muutke küpsiste eelistusi

E-raamat: Best Map Projections

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031783340
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031783340

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the most condensed information about the theory of distortion theory developed by N.A. Tissot. It considers some of the issues of this theory to finding the best projections. Various criteria for ideal projections are analyzed. In finding an ideal projection using the Airy criterion for an arbitrary mapping region is solved by the variational method using the Euler–Ostrogradsky system of equations under natural boundary conditions. The same method is applied to a set of projections in which the sum of the extremal scale factors is equal to 2. It is shown that for these projections, the area distortions are quantities of the second order of smallness, while the linear distortions are quantities of the first order of smallness. The problem of finding the best projections using the Chebyshev criterion has been studied. Airy, Postel, Gauss–Kruger, and Markov projections are considered in detail.

Introduction.- Map projections and their distortionsMap projections and
their distortions.- The problem of finding the best projections.- Ideal
projection according to the Airy criterion.- The best projection from a set
of close-to-equal-area projections.- Airy projection.- GaussKruger
projection.- Arithmetic mean principle for the GaussKruger
projection.- Ideal and best projections according to Chebyshevs
criterion.- Appendixes.