Muutke küpsiste eelistusi

BioElectroMagnetics: Human Safety and Biomedical Applications 2nd edition [Kõva köide]

(University of Ottawa, Ontario, Canada)
  • Formaat: Hardback, 506 pages, kõrgus x laius: 234x156 mm, kaal: 1020 g, 14 Tables, black and white; 50 Illustrations, color
  • Ilmumisaeg: 20-May-2020
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498779034
  • ISBN-13: 9781498779036
  • Formaat: Hardback, 506 pages, kõrgus x laius: 234x156 mm, kaal: 1020 g, 14 Tables, black and white; 50 Illustrations, color
  • Ilmumisaeg: 20-May-2020
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498779034
  • ISBN-13: 9781498779036
This book is an educational resource of evolving scientific knowledge in the area of bioelectromagnetics that may serve the interests of students and decision-makers, as well as society as a whole. It is distinguished by extensive descriptions of fundamental biophysical concepts and their relevance to human health. Reflecting the transdisciplinary approach from several different intellectual streams including physics, biology, epidemiology, medicine, environment, risk science, and engineering, the book is quite a venture into the battling studies to assess the latest research on health effects and biomedical applications of EM energy. This new edition of the book particularly looks at the potential threats from the emerging 5G wireless networks, which will deploy large numbers of low-powered smartphones, notebooks, tablets, radio access networks, and other transmitters.

Features











Introduces necessary biophysical principles of EM fields in the context of their interaction with living systems.





Strengthens understanding of cutting-edge research on several major areas in the broad area of bioelectromagnetics.





Presents safety standards and guidelines for human exposure to EM fields.





Discusses techniques that have been developed to ensure adequate EM-thermal dosimetry required for both health effects and biomedical applications.





Provides insight into the determinants of EM health risk assessment and public concerns.





Includes extensive reference list at the end of each chapter to enhance further study.

Riadh Habash is a special appointment professor and McLaughlin Research Chair in Electromagnetic Fields and Health at the University of Ottawa, Canada. He has been the recipient of many awards, including the National Wighton Fellowship Award, and has authored or co-authored over 90 research articles, six books, and five book chapters. His most recent books are Green Engineering in 2017 and Professional Practice in 2019 (CRC Press), with the remaining previous books targeting the area of bioelectromagnetics.
Preface xxi
Acknowledgments xxv
Author Bio xxvii
Abbreviations xxix
Part I Foundational Aspects of Bio + Electro + Magnetics
Chapter 1 Foundations of electromagnetism
3(48)
The hypothesis
3(1)
1.1 Natural and artificial electromagnetic fields
3(3)
1.1.1 Natural sources
3(1)
1.1.2 Artificial sources
4(2)
1.2 Fields
6(13)
1.2.1 Electric fields
6(2)
1.2.2 Magnetic fields
8(3)
1.2.3 Signals, polarization, and harmonics
11(1)
1.2.4 Theory of electromagnetic fields
12(2)
1.2.5 Electromagnetic waves
14(1)
1.2.5.1 Wave propagation
14(2)
1.2.5.2 Wave-particle duality
16(1)
1.2.5.3 Near-, intermediate-, and far-field regions
16(1)
1.2.5.4 Electromagnetic fields
17(2)
1.3 Electromagnetic induction
19(2)
1.4 Electromagnetic energy
21(1)
1.5 Electromagnetic spectrum
22(2)
1.6 Sources of electric and magnetic fields
24(6)
1.6.1 DC sources
24(1)
1.6.1.1 Magnetosphere
25(1)
1.6.1.2 Magnetic resonance imaging (MRI)
26(1)
1.6.1.3 DC power systems
26(1)
1.6.2 AC sources
27(1)
1.6.2.1 Single-conductor source
28(1)
1.6.2.2 Dual-conductor source
28(1)
1.6.2.3 Loop source
29(1)
1.6.2.4 Three-phase source
29(1)
1.7 Sources of radiofrequency radiation
30(9)
1.7.1 Wireless frequency allocations
30(2)
1.7.2 Generators
32(1)
1.7.3 Transmission paths
32(1)
1.7.3.1 Transmission lines
32(1)
1.7.3.2 Coaxial cables
33(1)
1.7.3.3 Waveguides
34(1)
1.7.4 Antennas
34(1)
1.7.4.1 Antenna properties
35(2)
1.7.4.2 Types of antennas
37(2)
1.8 Fifth generation (5G) wireless systems
39(9)
1.8.1 Millimeter wave (MMW) communications
40(2)
1.8.2 State of knowledge
42(1)
1.8.3 Soft and green network
43(1)
1.8.3.1 Radio Access Network (RAN)
43(1)
1.8.3.2 5G core network
44(1)
1.8.3.3 Beamforming
45(1)
1.8.4 Satellite and non-terrestrial networks
46(1)
1.8.5 Internet of Things
47(1)
1.8.6 The questions of electromagnetic constraint
47(1)
References
48(3)
Chapter 2 Foundations of bioelectromagnetics
51(46)
The hypothesis
51(1)
2.1 Introduction
51(2)
2.2 Biophysical aspects of bioelectromagnetics
53(11)
2.2.1 Interaction mechanisms for electric and magnetic fields
54(1)
2.2.1.1 Induced fields and currents
54(2)
2.2.1.2 Electrostimulation
56(1)
2.2.1.3 Magnetic biosubstances
57(1)
2.2.1.4 Free radical
58(1)
2.2.2 Interaction mechanisms for radio frequency radiation
58(1)
2.2.2.1 Thermal mechanisms
58(2)
2.2.2.2 Nonthermal/athermal mechanisms
60(1)
2.2.2.3 Thermal- or nonthermal-based exposure limits?
61(1)
2.2.3 Cell membrane and the chemical link
62(1)
2.2.3.1 The role of cell membranes
62(1)
2.2.3.2 Voltage-gated calcium channels (VGCCs)
63(1)
2.3 Biological and health effects
64(12)
2.3.1 Cells and membranes
65(1)
2.3.2 Tissues
66(1)
2.3.3 Changes in protein conformation
67(1)
2.3.4 Changes in binding probability
67(1)
2.3.5 Vibrational states of biological components
68(1)
2.3.6 Genetic material
68(1)
2.3.7 Carcinogenesis
69(1)
2.3.8 Hypothesis of melatonin
70(2)
2.3.9 Cancer mechanisms
72(1)
2.3.10 Brain and nervous system
72(2)
2.3.10.1 Brain
74(1)
2.3.10.2 Neurological effects
75(1)
2.4 Bioelectromagnetic dosimetry
76(10)
2.4.1 Macrodosimetry
77(1)
2.4.1.1 Induced current density
77(1)
2.4.1.2 Specific absorption rate
78(2)
2.4.1.3 Power density
80(1)
2.4.1.4 Exposure-ratio metric
81(1)
2.4.1.5 Dose
81(1)
2.4.1.6 Composite metric
81(1)
2.4.1.7 Thermal dosimetry
82(2)
2.4.2 Microdosimetry
84(1)
2.4.3 Impact of frequency
85(1)
2.4.4 Impact of dielectric constant
86(1)
2.5 Toward health-based safety standards
86(1)
References
87(10)
Part II Extremely Low Frequency Fields
Chapter 3 Extremely low frequency field safety
97(42)
The hypothesis
97(1)
3.1 Introduction
97(2)
3.2 Safety standards and guidelines
99(9)
3.2.1 Standardization process
99(2)
3.2.2 IEEE standard
101(1)
3.2.3 ICNIRP guidelines
102(2)
3.2.4 Exposure limits
104(1)
3.2.5 Precautionary exposure models
105(3)
3.3 Potential sources
108(3)
3.3.1 Residential areas
108(1)
3.3.2 Power systems
109(1)
3.3.3 Transportation systems
110(1)
3.4 Dosimetry
111(2)
3.5 Measurement techniques
113(6)
3.5.1 Electric field measurements
114(1)
3.5.2 Magnetic field measurements
115(2)
3.5.3 Test and survey protocol
117(2)
3.6 Exposure assessments and exposimetry
119(4)
3.6.1 Outdoor and indoor environmental surveys
119(1)
3.6.2 Residential exposure
120(1)
3.6.3 Transport systems exposure
121(1)
3.6.4 Personal exposimetry
122(1)
3.7 Field management
123(9)
3.7.1 Mitigation techniques
123(1)
3.7.1.1 Buildings
123(1)
3.7.1.2 Power systems
123(2)
3.7.1.3 Electric vehicles
125(1)
3.7.2 Shielding techniques
125(1)
3.7.2.1 Active shielding
126(1)
3.7.2.2 Passive shielding by conductive materials
127(1)
3.7.2.3 Passive shielding by ferromagnetic materials
128(1)
3.7.2.4 Shielding design
129(1)
3.7.3 Reduction procedures
130(1)
3.7.3.1 General
130(1)
3.7.3.2 Computers
131(1)
References
132(7)
Chapter 4 Health effects of exposure to extremely low frequency fields
139(38)
The hypothesis
139(1)
4.1 Introduction
139(1)
4.2 Epidemiological studies
140(9)
4.2.1 Occupational environments
142(1)
4.2.2 General public environments
143(1)
4.2.2.1 Childhood cancer and leukemia
144(1)
4.2.2.2 Adult cancer
145(2)
4.2.2.3 Neurodegenerative diseases
147(1)
4.2.2.4 Reproductive health effects
147(2)
4.2.3 Summary of epidemiological studies
149(1)
4.3 Experimental studies
149(5)
4.3.1 Genotoxicity and carcinogenicity
149(2)
4.3.2 Cell functions
151(1)
4.3.3 Animal studies
152(2)
4.4 Clinical studies
154(5)
4.4.1 Perception
155(1)
4.4.2 Brain and behavior
155(1)
4.4.3 Cardiovascular system
156(1)
4.4.4 Melatonin release
157(1)
4.4.5 Reproductive and development effect
158(1)
4.5 Concluding remarks
159(2)
4.5.1 Review studies
160(1)
4.5.2 Future research
161(1)
References
161(16)
Part III Radio Frequency Radiation
Chapter 5 Radio frequency radiation safety
177(48)
The hypothesis
177(1)
5.1 Introduction
177(1)
5.2 Safety standards
178(11)
5.2.1 Process of standardization
178(2)
5.2.2 IEEE C95.1 standard
180(2)
5.2.3 Federal Communication Commission (FCC) guidelines
182(1)
5.2.4 ICNIRP guidelines
183(2)
5.2.5 Compliances and restrictions
185(2)
5.2.6 Precautionary exposure models
187(2)
5.3 Dosimetry
189(9)
5.3.1 Whole-body assessments
189(2)
5.3.2 In-head assessments
191(1)
5.3.2.1 Sources of local RFR
192(2)
5.3.2.2 Adult size heads
194(1)
5.3.2.3 Child size heads
195(1)
5.3.3 Tissue and skin dosimetry
196(2)
5.4 Exposure assessment and exposimetry
198(13)
5.4.1 Exposure assessment approaches
198(1)
5.4.1.1 Assessment techniques
199(1)
5.4.1.2 Assessment units
200(1)
5.4.2 Sources of environmental RFR
200(1)
5.4.2.1 Cellular base stations
200(3)
5.4.2.2 Broadcast antennas
203(1)
5.4.2.3 Wireless internet
204(1)
5.4.2.4 Bluetooth devices
204(1)
5.4.2.5 Smart electricity meters
205(1)
5.4.2.6 Baby monitoring systems
205(1)
5.4.2.7 Microwave ovens, heaters, and dryers
205(1)
5.4.2.8 Medical equipment
206(1)
5.4.2.9 Other sources
206(1)
5.4.3 Indoor environmental RFR
206(1)
5.4.3.1 Exposure in public places
207(1)
5.4.3.2 Exposures in residential places
208(1)
5.4.3.3 Exposures in transportation facilities
209(1)
5.4.3.4 Summary of results
209(1)
5.4.4 Outdoor environmental RFR
210(1)
5.5 Mitigation approaches
211(2)
5.5.1 Exposure from common sources
211(1)
5.5.2 Exposure reduction
211(2)
5.6 Future development
213(4)
5.6.1 Harmonizing exposure limits
213(2)
5.6.2 5G deployment policies
215(1)
5.6.3 Dosimetry knowledge gap
215(2)
References
217(8)
Chapter 6 Health effects of exposure to radio frequency radiation
225(44)
The hypothesis
225(1)
6.1 Introduction
225(1)
6.2 Epidemiological studies
226(4)
6.2.1 Occupational exposure studies
226(1)
6.2.2 Public exposure studies
227(1)
6.2.3 INTERPHONE study
228(1)
6.2.4 IARC statement
229(1)
6.2.5 COSMOS
230(1)
6.3 Cellular and animal studies
230(4)
6.3.1 Genetic toxicology
230(2)
6.3.2 Cellular functions
232(1)
6.3.3 Animal studies
233(1)
6.4 Clinical studies
234(3)
6.4.1 Perception and auditory response
234(1)
6.4.2 Ocular effects
235(1)
6.4.3 Brain function
236(1)
6.4.4 Cardiac functions
237(1)
6.4.5 Melatonin
237(1)
6.5 Reproductive system and male fertility
237(2)
6.5.1 State of the art review
238(1)
6.5.2 Protective measures
238(1)
6.6 Electromagnetic hypersensitivity (EHS)
239(4)
6.6.1 Sensitivity of children
239(1)
6.6.2 Hypersensitivity of adults
240(3)
6.7 Concluding remarks
243(6)
6.7.1 International and national expert group evaluations
243(1)
6.7.1.1 International Agency for Research on Cancer (IARC)
243(1)
6.7.1.2 Bio-Initiatives Working Group
244(1)
6.7.1.3 Committee on Man and Radiation (COMAR)
244(1)
6.7.1.4 World Health Organization (WHO)
244(1)
6.7.1.5 French Agency for Food, Environmental and Occupational Health and Safety (ANSES)
245(1)
6.7.1.6 Advisory Group on Non-ionizing Radiation (AGNIR)
245(1)
6.7.1.7 Norwegian Institute of Public Health
245(1)
6.7.1.8 Swedish Council for Working Life and Social Research (SCWLSR)
245(1)
6.7.1.9 Institute of Engineering and Technology (IET)
246(1)
6.7.1.10 Expert Panel report on a review of Safety Code 6
246(1)
6.7.1.11 Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)
247(1)
6.7.1.12 Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)
247(1)
6.7.1.13 National Toxicology Program (NTP)
248(1)
6.7.2 Future research
248(1)
References
249(20)
Part IV Therapeutic Applications
Chapter 7 Diathermy therapy
269(36)
The hypothesis
269(1)
7.1 Introduction
269(4)
7.1.1 Historical perspective
269(3)
7.1.2 Literature review
272(1)
7.2 Thermal mechanisms
273(4)
7.2.1 Heat stress
273(1)
7.2.2 Thermal injury
274(1)
7.2.3 Thermotolerance
275(2)
7.3 Therapeutic categories
277(2)
7.4 Diathermy modalities
279(2)
7.4.1 Short-wave diathermy
279(1)
7.4.2 Microwave diathermy
280(1)
7.4.3 MMW and THz therapy
281(1)
7.5 Diathermy therapeutic applications
281(4)
7.5.1 Pain management
281(2)
7.5.2 Rehabilitation practice
283(1)
7.5.3 Bone and tissue healing
284(1)
7.6 Possible side effects of EM energy and heat
285(7)
7.6.1 Tissue physiology and response to heat
285(1)
7.6.2 Cellular responses
286(1)
7.6.3 Immunological effects
287(1)
7.6.4 Cardiovascular responses
288(1)
7.6.5 Nervous system responses
289(2)
7.6.6 Carcinogenic effects
291(1)
7.7 Concluding remarks
292(2)
7.7.1 Risk assessment
292(1)
7.7.2 Trends in equipment development
293(1)
7.7.3 Future research
294(1)
References
294(11)
Chapter 8 Hyperthermia therapy
305(52)
The hypothesis
305(1)
8.1 Introduction
305(6)
8.1.1 Historical perspective
305(1)
8.1.2 Early research work
306(1)
8.1.3 Modern hyperthermia
307(2)
8.1.4 Practical challenges
309(1)
8.1.5 A wealth of literature
310(1)
8.2 Biophysical and practical rationale
311(3)
8.2.1 Heat alone
311(2)
8.2.2 Heat and radiation
313(1)
8.2.3 Heat and drugs
314(1)
8.3 Hyperthermia in oncology
314(8)
8.3.1 Local hyperthermia
315(1)
8.3.1.1 External local hyperthermia
316(1)
8.3.1.2 Intraluminal local hyperthermia
316(1)
8.3.1.3 Interstitial local hyperthermia
317(1)
8.3.2 Regional hyperthermia
318(1)
8.3.2.1 Deep regional hyperthermia
318(1)
8.3.2.2 Regional perfusion hyperthermia
319(1)
8.3.2.3 Local regional hyperthermia or oncothermia
319(1)
8.3.3 Whole-Body Hyperthermia (WBH)
320(1)
8.3.4 Extracellular hyperthermia
321(1)
8.4 Hyperthermia techniques and equipment
322(10)
8.4.1 Techniques
322(1)
8.4.1.1 Radio frequency (RF)
322(1)
8.4.1.2 Microwaves
323(1)
8.4.2 External RF applicators
324(1)
8.4.2.1 Capacitive heating
324(1)
8.4.2.2 Inductive heating
325(1)
8.4.2.3 Hybrid heating systems
326(1)
8.4.3 External radiative EM devices
326(1)
8.4.3.1 Single applicators
327(1)
8.4.3.2 Multielement array applicators
328(2)
8.4.4 Interstitial and intracavitary devices
330(1)
8.4.5 Nanotechnology-based sources
331(1)
8.5 Hyperthermia with other modalities
332(3)
8.5.1 Hyperthermia and radiation
333(1)
8.5.2 Hyperthermia and chemotherapy
334(1)
8.5.3 Hyperthermia and radiochemotherapy
335(1)
8.6 Status and trends
335(2)
8.6.1 Technical and clinical challenges
335(2)
8.6.2 Standardization
337(1)
8.7 Conclusion
337(1)
References
338(19)
Chapter 9 Ablation therapy
357(52)
The hypothesis
357(1)
9.1 Introduction
357(1)
9.2 Procedures and techniques
358(2)
9.2.1 Minimally invasive procedures
358(1)
9.2.2 Ablation techniques
359(1)
9.3 Clinical applications
360(4)
9.3.1 Liver
361(1)
9.3.2 Lung
361(1)
9.3.3 Prostate
362(1)
9.3.4 Kidney
362(1)
9.3.5 Breast
363(1)
9.3.6 Bone
363(1)
9.3.7 Cardiac diseases
363(1)
9.4 Radio frequency ablation (RFA)
364(11)
9.4.1 Technical considerations
364(1)
9.4.1.1 Mechanisms
364(1)
9.4.1.2 Electrodes and approaches
365(1)
9.4.1.3 Multiple applicators
366(1)
9.4.1.4 Localization
367(1)
9.4.1.5 Thermal-electrical modeling
368(1)
9.4.2 Clinical advantages and applications
368(1)
9.4.2.1 Cancer treatment
369(2)
9.4.2.2 Cardiac diseases
371(1)
9.4.2.3 Snoring and obstructive sleep apnea (OSA)
372(1)
9.4.3 Limitations
373(1)
9.4.4 Complications
374(1)
9.5 Microwave ablation (MWA)
375(9)
9.5.1 Technical considerations
376(1)
9.5.1.1 Mechanisms
376(1)
9.5.1.2 Antenna designs
377(1)
9.5.1.3 Multiple insertions and multiple antennas
378(1)
9.5.2 Clinical advantages and applications
379(1)
9.5.2.1 Treating cancer
379(1)
9.5.2.2 Cardiac diseases
380(1)
9.5.2.3 Microwave endometrial ablation (MEA)
381(2)
9.5.3 Limitations
383(1)
9.5.4 Complications
384(1)
9.6 Trends and future research
384(3)
9.6.1 Improved techniques
384(2)
9.6.2 Ablation in clinical practice
386(1)
9.6.3 Future research
386(1)
References
387(22)
Part V Dosimetry, Thermometry, and Medical Imaging
Chapter 10 Electromagnetic-thermal dosimetry
409(24)
The hypothesis
409(1)
10.1 Introduction
409(1)
10.2 Power deposition modeling
410(2)
10.2.1 Techniques for low frequencies
410(1)
10.2.2 Techniques for radiofrequency radiation
411(1)
10.2.2.1 Analytical techniques
411(1)
10.2.2.2 Numerical techniques
411(1)
10.3 Thermoregulatory modeling
412(2)
10.3.1 Thermal dose
412(1)
10.3.2 Thermal measurements
413(1)
10.4 Bioheat transfer models
414(7)
10.4.1 Pennes model
415(2)
10.4.2 Wissler model
417(1)
10.4.3 Stolwijik model
418(1)
10.4.4 Weinbaum-Jiji model
418(2)
10.4.5 Baish model
420(1)
10.4.6 Applications of bioheat transfer models
420(1)
10.5 Thermal therapy planning system (TTPS)
421(3)
10.5.1 Objectives and requirements
421(2)
10.5.2 Developments in TTPS
423(1)
10.5.3 Software packages
423(1)
10.6 Status and trends
424(1)
References
425(8)
Chapter 11 Thermometry and medical imaging
433(34)
The hypothesis
433(1)
11.1 Introduction
433(1)
11.2 Historical perspective
434(1)
11.3 Invasive thermometry
435(3)
11.3.1 Thermoelectric thermometry
436(1)
11.3.2 Thermistor
437(1)
11.3.3 Thermometer
437(1)
11.3.4 Thermography
438(1)
11.4 Non-invasive thermometry and imaging techniques
438(17)
11.4.1 Ultrasound imaging
440(1)
11.4.1.1 Apparatus
440(1)
11.4.1.2 Advantages and limitations
441(1)
11.4.1.3 Two-to three-dimensional ultrasonography
442(1)
11.4.2 Magnetic resonance imaging (MRI)
443(1)
11.4.2.1 Operation
443(2)
11.4.2.2 Advantages and limitations
445(1)
11.4.3 Microwave imaging
446(2)
11.4.4 THz imaging
448(1)
11.4.4.1 Characteristics of THz radiation
448(1)
11.4.4.2 THz-ray system
449(2)
11.4.4.3 Challenges
451(1)
11.4.4.4 THz-ray computed tomography (CT)
451(1)
11.4.5 IR thermography
452(1)
11.4.6 X-ray computed tomography
453(1)
11.4.6.1 Conventional CT scanners
454(1)
11.4.6.2 Spiral (helical) CT scanners
454(1)
11.4.6.3 Multislice CT scanners
455(1)
11.5 Status and trends
455(1)
References
456(11)
Chapter 12 Electromagnetic risk paradigm
467(28)
The hypothesis
467(1)
12.1 Introduction
467(2)
12.2 Risk assessment
469(5)
12.2.1 Scientific evidence
470(2)
12.2.2 Safety standard programs
472(1)
12.2.3 Structured risk assessment
473(1)
12.3 Risk perception
474(3)
12.3.1 Public perception of risk
474(1)
12.3.2 Factors relevant to electromagnetic fields
475(1)
12.3.3 Health consequences of risk perception
476(1)
12.4 Risk management
477(5)
12.4.1 Anticipatory ethics
477(1)
12.4.2 Involving the public
478(1)
12.4.3 Public meetings
479(1)
12.4.4 Precautionary approaches
479(3)
12.4.5 Public understanding of precautionary actions
482(1)
12.5 Risk communication
482(5)
12.5.1 Role of communication in risk assessment
484(1)
12.5.2 Media coverage
485(1)
12.5.3 Role of industry
485(1)
12.5.4 Role of the internet
486(1)
12.5.5 Communication with children
487(1)
12.6 Trends and future research
487(4)
12.6.1 Challenges and implications
487(1)
12.6.2 Research and policy
488(2)
12.6.3 Concluding remarks
490(1)
References
491(4)
Index 495
Professor Riadh Habash holds the McLaughlin Research Chair in Energy and Health at the University of Ottawa in Ottawa, Canada. He has extensive teaching and research experience in energy and health, mechatronics, electrical power systems and green energy. He has published over 200 papers in related topics and has published four books in these areas.