Muutke küpsiste eelistusi

Biosensors in Food Processing, Safety, and Quality Control [Kõva köide]

Edited by (Hacettepe University, Ankara, Turkey)
  • Formaat: Hardback, 358 pages, kõrgus x laius: 234x156 mm, kaal: 830 g, 20 Tables, black and white; 69 Illustrations, black and white
  • Sari: Contemporary Food Engineering
  • Ilmumisaeg: 17-Dec-2010
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1439819858
  • ISBN-13: 9781439819852
Teised raamatud teemal:
  • Formaat: Hardback, 358 pages, kõrgus x laius: 234x156 mm, kaal: 830 g, 20 Tables, black and white; 69 Illustrations, black and white
  • Sari: Contemporary Food Engineering
  • Ilmumisaeg: 17-Dec-2010
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1439819858
  • ISBN-13: 9781439819852
Teised raamatud teemal:
"This book details the latest developments in sensing technology and its application in food industry. It explores the opportunities created by the chemical and biosensensing technology and improvements performed in recent years for better food quality, better food safety, better food processing and control, and better input for food industry. The chapters in this book have been divided into three sections: basic principles of chemical and biosensing technology, biosensors for food processing and control, and biosensors for food safety"--Provided by publisher.
Series Preface vii
Preface ix
Series Editor xi
Acknowledgments xiii
Contributors xv
1 Amperometric Biosensors in Food Processing, Safety, and Quality Control
1(52)
Ismail Hakki Boyaci
Mehmet Mutlu
1.1 Introduction
2(1)
1.2 Amperometric Biosensors
2(7)
1.2.1 Principles of Amperometric Transduction
3(1)
1.2.2 Amperometric Enzyme Electrode
3(2)
1.2.3 Mediated Amperometric Enzyme Electrodes
5(2)
1.2.4 Amperometric Enzyme Electrodes with Nondiffusing Mediators
7(1)
1.2.5 Multienzyme Electrodes
7(2)
1.3 Basic Construction and Measurement Principles
9(4)
1.4 The Interference-Free Biosensors
13(6)
1.5 Applications of Amperometric Biosensors
19(11)
1.5.1 Determination of Food Components
20(1)
1.5.1.1 Carbohydrates
20(3)
1.5.1.2 Proteins
23(1)
1.5.1.3 Fats and Oils
24(1)
1.5.1.4 Organic Acids
24(1)
1.5.1.5 Enzymes
25(1)
1.5.1.6 Other Food Components
26(1)
1.5.2 Determination of Food Contaminants
27(1)
1.5.2.1 Pesticides
27(1)
1.5.2.2 Foodborne Pathogens
27(1)
1.5.2.3 Toxins
28(1)
1.5.2.4 Other Contaminants
29(1)
1.5.3 Determination of Food Additives
29(1)
1.6 Commercial Availability of Amperometric Biosensors for Food
30(8)
1.7 Conclusion
38(1)
References
39(14)
2 Basic Principles of Optical Biosensors in Food Engineering
53(18)
Ebru Akdogan
Mehmet Mutlu
2.1 Introduction
53(1)
2.2 Optical Biosensing
54(1)
2.3 Principles of Optical Detection
55(1)
2.4 Types of Optical Biosensors
55(8)
2.4.1 Direct Optical Detection
55(1)
2.4.1.1 Reflectometric Detection
55(1)
2.4.1.2 Reflectometric Interference Spectroscopy
56(1)
2.4.1.3 Ellipsometry
56(1)
2.4.1.4 Evanescent Field Techniques
56(2)
2.4.1.5 Mach-Zehnder Interferometer
58(1)
2.4.1.6 Young Interferometer
58(1)
2.4.1.7 Resonant Mirror Sensor
59(1)
2.4.1.8 Surface Plasmon Resonance
59(2)
2.4.1.9 Grating Couplers
61(1)
2.4.2 Labeled Systems Detection
61(1)
2.4.3 Fiber-Optic Biosensors
62(1)
2.5 Optical Biosensors for Food Quality and Food Safety
63(3)
2.6 Conclusion
66(1)
References
66(5)
3 Mass Sensitive Biosensors Principles and Applications in Food
71(18)
Selma Mutlu
3.1 Introduction
71(2)
3.2 Detection Scheme of Quartz Crystal Microbalance (QCM)
73(1)
3.3 Assay Format of QCM
74(1)
3.4 Applications of QCM in Food Analysis
75(1)
3.5 QCM Immunosensor for Histamine
76(3)
3.5.1 Modification of Quartz Crystal Surfaces
76(1)
3.5.1.1 Chemical Treatment
76(1)
3.5.1.2 Plasma Polymerization
77(2)
3.6 Activation of Modified Quartz Crystal Surfaces
79(1)
3.6.1 Functionalization of the Surfaces by Glutaraldehyde
79(1)
3.6.2 Treatment with EDC/NHS
80(1)
3.7 Biomolecule Immobilization
80(1)
3.8 Analysis of Toxins in Food
81(2)
3.8.1 Determination of Histamine
81(1)
3.8.1.1 Calibration of the Histamine Immunosensor
82(1)
3.8.1.2 Performance of the Histamine Immunosensor
82(1)
3.9 Future Trends
83(1)
References
83(6)
4 Biosensing for Food Safety
89(34)
Maria Isabel Pividori
Salvador Alegret
4.1 Introduction
89(8)
4.1.1 Food Residues and Pathogens in Food Safety
89(2)
4.1.2 Food Pathogen Detection by Culture and Rapid Methods
91(2)
4.1.3 Pesticide and Drug Residue Detection Methods
93(4)
4.2 Biosensing: A Novel Strategy for Food Safety
97(7)
4.2.1 Transducing Features in Electrochemical Biosensors
98(2)
4.2.2 Immobilization Strategies in Electrochemical Biosensors for Food Safety
100(2)
4.2.3 Electrochemical Detection Strategies in Electrochemical Biosensors for Food Safety
102(2)
4.3 Electrochemical Immunosensing for Food Safety
104(4)
4.4 Electrochemical Genosensing for Food Safety
108(6)
4.5 Electrochemical Biosensing Approaches Combining Both Immunological and Genetic Information for Food Safety
114(2)
4.6 Conclusion
116(1)
References
117(6)
5 Electrochemical DNA Biosensors in Food Safety
123(12)
Pinar Kara
Ozan Kilickaya
Mehmet Sengun Ozsoz
5.1 Introduction
123(1)
5.2 Biosensors
124(6)
5.2.1 Biosensors According to Biorecognition Elements
125(1)
5.2.1.1 Enzyme Biosensors
125(1)
5.2.1.2 Immunosensors
125(1)
5.2.1.3 Nucleic Acid Biosensors
126(1)
5.2.2 Biosensors According to Transduction Technology
126(1)
5.2.2.1 Optical Biosensors
127(1)
5.2.2.2 Piezoelectrical Biosensors
127(1)
5.2.2.3 Electrochemical Biosensors
127(1)
5.2.3 Electrochemical DNA Biosensors in Food Analysis
127(1)
5.2.3.1 Detection of Genetically Modified Organisms (GMOs)
128(1)
5.2.3.2 Detection of Foodborne Pathogenic Microorganisms
129(1)
5.3 Conclusion
130(1)
References
130(5)
6 Biosensors for the Assessment of Natural Toxins in Food
135(12)
Beatriz Prieto-Simon
Thierry Noguer
Monica Campas
6.1 Introduction
135(5)
6.1.1 Mycotoxins
136(2)
6.1.2 Phycotoxins
138(2)
6.2 Biosensors for Natural Toxins Detection in Food
140(3)
6.2.1 Electrochemical Biosensors for Natural Toxin Detection and Their Applicability to Food Samples
141(2)
6.3 Conclusion
143(1)
Acknowledgments
144(1)
References
144(3)
7 Biosensors for Pesticides and Foodborne Pathogens
147(46)
Munna S. Thakur
Raghuraj S. Chouhan
Aaydha C. Vinayaka
7.1 Introduction
148(1)
7.2 Biosensors
149(1)
7.3 Pesticide Detection Using Biosensors
150(15)
7.3.1 Enzyme-Based Biosensors for Organophosphorous Pesticides
150(2)
7.3.1.1 Enzyme Inactivation Problems with AchE
152(1)
7.3.1.2 Acid Phosphatase Inhibition-Based Detection
152(1)
7.3.1.3 Ascorbate Oxidase-Based Biosensors
153(1)
7.3.1.4 Biosensors for Organochlorine Pesticides
153(1)
7.3.2 Immunosensors
154(1)
7.3.2.1 Advantages of Immunosensor Methods over Conventional Methods
154(1)
7.3.2.2 Labeled Formats
154(1)
7.3.2.3 Label-Free Formats
155(1)
7.3.3 Electrochemical Immunosensors
156(1)
7.3.3.1 Potentiometric Methods
156(1)
7.3.3.2 Amperometric Methods
157(1)
7.3.3.3 Capacitance/Conductance/Impedance Methods
158(1)
7.3.4 Optical Immunosensors
158(1)
7.3.5 Reflectometric Interference Spectroscopy
159(1)
7.3.6 Interferometry
159(1)
7.3.7 Optical Wave-Guide Light Mode Spectroscopy
160(1)
7.3.8 Total Internal Reflection Fluorescence
160(1)
7.3.9 Surface Plasmon Resonance
161(1)
7.3.10 Fluorescence/Luminescence
162(1)
7.3.11 Piezoelectric Immunosensors
163(1)
7.3.12 Micronanomechanics Immunosensors
164(1)
7.4 Chemiluminescence
165(4)
7.4.1 Luminol-Based Chemiluminescence
166(1)
7.4.2 Chemiluminescent Immunoassays
167(2)
7.5 Radioimmunoassays
169(1)
7.6 Nanoparticle-Based Immunoassays and Immunosensors
170(6)
7.6.1 Gold Nanoparticle-Based Immunosensors and Immunoassays
170(4)
7.6.2 Quantum Dot-Based Fluorescence Immunoassays
174(2)
7.7 Biosensors for Pathogen Detection
176(5)
7.7.1 Immunoassays
177(1)
7.7.2 Gold Nanoparticle-Based Detection of Pathogens and Their Toxins
177(2)
7.7.3 Fluoroimmunoassays and Quantum Dot-Based Detection of Pathogens and Their Toxins
179(2)
7.8 Microarrays
181(2)
7.8.1 DNA Microarrays
181(2)
7.8.2 Protein Arrays
183(1)
7.9 Conclusion
183(1)
Acknowledgments
184(1)
References
184(9)
8 Impedance Biosensors/Biochips for Detection of Foodborne Pathogens
193(34)
Liju Yang
8.1 Introduction
194(3)
8.1.1 Foodborne Pathogens and Their Detection
194(1)
8.1.2 Impedance Technique for Foodborne Pathogen Detection
195(1)
8.1.3 Impedance Properties of Bacterial Cells
196(1)
8.1.4 Mechanisms for Impedance Detection of Bacteria
196(1)
8.2 Basics of Impedance Technique
197(3)
8.2.1 Definition of Impedance
197(1)
8.2.2 Electrical/Electrochemical Impedance Spectroscopy
198(1)
8.2.3 Equivalent Circuit
199(1)
8.3 Microfabricated Interdigitated Microelectrodes for Impedance Measurements
200(2)
8.4 Microchip Impedance Detection of Salmonella Based on Bacterial Metabolism
202(5)
8.4.1 The Principle of Metabolism-Based Impedance Detection
202(1)
8.4.2 The Microchip and Methods
203(1)
8.4.3 Impedance Spectrum of the IME System and Its Equivalent Circuit
204(1)
8.4.4 Impedance Change Due to the Growth of S. typhimurium
205(1)
8.4.5 Impedance Detection of S. typhimurium
206(1)
8.5 Microchip Impedance Detection of Salmonella Based on Ion Release
207(5)
8.5.1 The Microchip and Methods
208(1)
8.5.2 Impedance Spectra of Salmonella Cell Suspensions in Deionized (DI) Water and in a Phosphate Buffered Solution (PBS)
209(1)
8.5.3 Impedance Response to Ion Release from Bacterial Cells in Suspensions
210(1)
8.5.4 Impedance Detection of Salmonella Cells in Suspensions
211(1)
8.6 Interdigitated Microelectrode (IME)-Based Impedance Immunosensors for Detection of Escherichia coli O157:H7
212(4)
8.6.1 The IME Microchip and Antibody Immobilization
213(1)
8.6.2 Principle of the Impedance Immunosensor
213(2)
8.6.3 The Equivalent Circuit and the Measurement of Electron-Tranfer Resistance
215(1)
8.6.4 Detection of Escherichia coli O157:H7 Cells
215(1)
8.7 Enhanced Immunocapture of Bacterial Cells on Interdigitated Microelectrodes by Dielectrophoresis
216(5)
8.7.1 The Microchip Device
217(1)
8.7.2 Principle of Dielectrophoresis-Enhanced Immunocapture of Bacterial Cells on the Chip
218(1)
8.7.3 Dielectrophoresis-Enhanced Immunocapture of Salmonella Cells on the Interdigitated Microelectrode
219(2)
8.8 Conclusion
221(1)
AcknowledgmentS
221(1)
References
221(6)
9 Application of Biosensors for the Quality Assurance of Dairy Products
227(30)
P. Narender Raju
K. Hanumantha Rao
9.1 Introduction
228(1)
9.2 General Principle for Biosensors Used in the Dairy Industry
229(1)
9.3 Applications of Biosensors in the Dairy Industry
230(18)
9.3.1 Biosensors for Milk Component Analysis
230(1)
9.3.1.1 Lactose and Other Milk Carbohydrates
230(8)
9.3.1.2 Milk Proteins
238(1)
9.3.1.3 Lipids
239(1)
9.3.1.4 Milk Enzymes and Hormones
240(1)
9.3.1.5 Vitamins
240(1)
9.3.1.6 Minerals
241(1)
9.3.1.7 Lactate/Lactic Acid
241(1)
9.3.2 Biosensors for Milk Adulterant and Preservative Analyses
242(1)
9.3.2.1 Urea
242(1)
9.3.2.2 Nisin
243(1)
9.3.3 Biosensors for Milk Contaminant Analysis
243(1)
9.3.3.1 Antibiotics and Veterinary Drug Residues
243(2)
9.3.3.2 Pesticide Residues and Dioxins
245(1)
9.3.4 Biosensors for Detection of Microbes and Their Metabolites in Dairy Products
246(1)
9.3.4.1 Pathogenic Microorganisms
247(1)
9.3.4.2 Microbial Toxins
248(1)
9.4 Conclusion
248(1)
Acknowledgment
249(1)
References
249(8)
10 Electrochemical Biosensors as a Tool for the Determination of Phenolic Compounds and Antioxidant Capacity in Foods and Beverages
257(16)
Montserrat Cortina-Puig
Thierry Noguer
Jean-Louis Marty
Carole Calas-Blanchard
10.1 Introduction
257(1)
10.2 Biosensors for Determination of the Total Phenol Content
258(5)
10.2.1 Polyphenol Oxidase-Based Biosensors
259(1)
10.2.1.1 Tyrosinase-Based Biosensors
259(2)
10.2.1.2 Laccase-Based Biosensors
261(1)
10.2.2 Peroxidase-Based Biosensors
262(1)
10.3 Biosensors for Determination of the Reactive Oxygen Species (ROS) Scavenging Capacity
263(5)
10.3.1 Cyt c-Based Biosensors
264(2)
10.3.2 Superoxide Dismutase-Based Biosensors
266(1)
10.3.3 DNA-Based Biosensors
267(1)
10.4 Conclusion
268(1)
Acknowledgment
269(1)
References
269(4)
11 Neural Networks Their Role in the Field of Sensors
273(14)
Jose S. Torrecilla
11.1 Introduction
273(1)
11.2 Principal Tools
274(5)
11.2.1 Neural Networks
274(4)
11.2.2 Principal Component Analysis Description
278(1)
11.2.3 Sensors
278(1)
11.3 Principal Results and Discussions
279(4)
11.3.1 Determination of Two Ionic Liquids, Heptane, and Toluene Concentrations
279(2)
11.3.2 Determination of Carotenoid Concentrations in Foods
281(1)
11.3.3 Determination of Polyphenolic Compounds Concentrations in Olive Oil Mill Wastewater
281(1)
11.3.4 Determination of Glucose, Uric Acid, and Ascorbic Acid in Biological Mixtures
282(1)
11.3.5 Identification of Edible and Vegetable Oils and Detection of Extra Virgin Olive Oil (EVOO) Adulteration
282(1)
11.4 Conclusion
283(1)
References
284(3)
12 Trends in Biosensing and Biosensors
287(38)
Frank Davis
Seamus P.J. Higson
12.1 Introduction
287(1)
12.2 Electrochemical Sensing
288(9)
12.2.1 Conducting Polymers
289(4)
12.2.2 Electrochemical Microarrays
293(1)
12.2.3 Incorporation of Nanosized Objects into Electrochemical Systems
294(2)
12.2.4 Practical Applications of Electrochemical Sensors
296(1)
12.3 Optical Biosensors
297(3)
12.4 Quartz Crystal Microbalance and Surface Acoustic Wave Sensors
300(2)
12.5 Micro-and Nanobiosensors
302(5)
12.5.1 Miniaturized Transducers
303(1)
12.5.2 Microarrays
303(2)
12.5.3 Nanobiosensors
305(2)
12.6 Gold-Thiol Monolayers
307(3)
12.7 Nanomaterials
310(4)
12.8 Aptamers
314(1)
12.9 Applications of Biosensors and Conclusions
315(1)
References
315(10)
Index 325
Hacettepe University, Ankara, Turkey University College Dublin, Ireland