Muutke küpsiste eelistusi

Birational Geometry of Hypersurfaces: Gargnano del Garda, Italy, 2018 2019 ed. [Pehme köide]

Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 297 pages, kõrgus x laius: 235x155 mm, kaal: 474 g, 36 Illustrations, black and white; IX, 297 p. 36 illus., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 26
  • Ilmumisaeg: 17-Oct-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030186377
  • ISBN-13: 9783030186371
Teised raamatud teemal:
  • Pehme köide
  • Hind: 85,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 100,89 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 297 pages, kõrgus x laius: 235x155 mm, kaal: 474 g, 36 Illustrations, black and white; IX, 297 p. 36 illus., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 26
  • Ilmumisaeg: 17-Oct-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030186377
  • ISBN-13: 9783030186371
Teised raamatud teemal:
Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results.The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side.Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.

Foreword .- Part 1 Birational invariants and (stable) rationality .- 1. Claire Voisin : Birational invariants and decomposition of the diagonal.- 2. Jean-Louis Colliot-Thélène : Non rationalité stable sur le corps qualconques.- 3 Jean-Louis Colliot-Thélène : Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder.- Part 2 Hypersurfaces .- 4. János Kollár : The rigidity theorem of Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-De Fernex-Ein-Mustata-Zhuang.- 5. Daniel Huybrechts : Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories.- 6. Emanuele Macrì, Paolo Stellari: Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces.- Appendix: Andreas Hochenegger : Introduction to derived categories of coherent sheaves.

Foreword .- Part 1 Birational invariants and (stable) rationality .- 1. Claire Voisin : Birational invariants and decomposition of the diagonal.- 2. Jean-Louis Colliot-Thélène : Non rationalité stable sur le corps qualconques.- 3 Jean-Louis Colliot-Thélène : Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder.- Part 2 Hypersurfaces .- 4. János Kollár : The rigidity theorem of Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-De Fernex-Ein-Mustata -Zhuang.- 5. Daniel Huybrechts : Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories.- 6. Emanuele Macrì, Paolo Stellari: Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces.- Appendix: Andreas Hochenegger : Introduction to derived categories of coherent sheaves.
- Part I Birational Invariants and (Stable) Rationality. - Birational
Invariants and Decomposition of the Diagonal. - Non rationalité stable sur
les corps quelconques. - Introduction to work of Hassett-Pirutka-Tschinkel
and Schreieder. - Part II Hypersurfaces. - The Rigidity Theorem of
FanoSegreIskovskikhManinPukhlikovCortiCheltsovdeFernexEinMustaZhu
ang. - Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated
K3 Categories. - Lectures on Non-commutative K3 Surfaces, Bridgeland
Stability, and Moduli Spaces. - Appendix: Introduction to Derived Categories
of Coherent Sheaves.