Muutke küpsiste eelistusi

E-raamat: Birational Geometry of Hypersurfaces: Gargnano del Garda, Italy, 2018

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results.The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side.Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.

Foreword .- Part 1 Birational invariants and (stable) rationality .- 1. Claire Voisin : Birational invariants and decomposition of the diagonal.- 2. Jean-Louis Colliot-Thélène : Non rationalité stable sur le corps qualconques.- 3 Jean-Louis Colliot-Thélène : Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder.- Part 2 Hypersurfaces .- 4. János Kollár : The rigidity theorem of Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-De Fernex-Ein-Mustata-Zhuang.- 5. Daniel Huybrechts : Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories.- 6. Emanuele Macrì, Paolo Stellari: Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces.- Appendix: Andreas Hochenegger : Introduction to derived categories of coherent sheaves.

Foreword .- Part 1 Birational invariants and (stable) rationality .- 1. Claire Voisin : Birational invariants and decomposition of the diagonal.- 2. Jean-Louis Colliot-Thélène : Non rationalité stable sur le corps qualconques.- 3 Jean-Louis Colliot-Thélène : Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder.- Part 2 Hypersurfaces .- 4. János Kollár : The rigidity theorem of Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-De Fernex-Ein-Mustata -Zhuang.- 5. Daniel Huybrechts : Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories.- 6. Emanuele Macrì, Paolo Stellari: Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces.- Appendix: Andreas Hochenegger : Introduction to derived categories of coherent sheaves.
- Part I Birational Invariants and (Stable) Rationality. - Birational
Invariants and Decomposition of the Diagonal. - Non rationalité stable sur
les corps quelconques. - Introduction to work of Hassett-Pirutka-Tschinkel
and Schreieder. - Part II Hypersurfaces. - The Rigidity Theorem of
FanoSegreIskovskikhManinPukhlikovCortiCheltsovdeFernexEinMustaZhu
ang. - Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated
K3 Categories. - Lectures on Non-commutative K3 Surfaces, Bridgeland
Stability, and Moduli Spaces. - Appendix: Introduction to Derived Categories
of Coherent Sheaves.