Forword |
|
vii | |
Preface |
|
xi | |
|
Chapter 1 BSIM and IC Simulation |
|
|
1 | (12) |
|
1.1 Circuit Simulation and Compact Models |
|
|
1 | (1) |
|
|
1 | (2) |
|
1.3 BSIM3 - A Compact Model Based on New MOSFET Physics |
|
|
3 | (2) |
|
1.4 BSIM3v3 - World's First MOSFET Standard Model |
|
|
5 | (1) |
|
1.5 BSIM4 - Aimed for 130nm Down to 20nm Nodes |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.8 Looking Towards the Future - The Multi-Gate MOSFET Model |
|
|
8 | (1) |
|
1.9 The Intent of This Book |
|
|
|
|
9 | (4) |
|
Chapter 2 Fundamental MOSFET Physical Effects and Their Models for BSIM4 |
|
|
13 | (74) |
|
2.1 Introduction and Chapter Objectives |
|
|
13 | (1) |
|
2.2 Gate and Channel Geometries and Materials |
|
|
14 | (7) |
|
2.2.1 Gate and Channel Lengths and Widths |
|
|
14 | (2) |
|
2.2.2 Model Card and Parameter Binning |
|
|
16 | (2) |
|
2.2.3 Gate Stack and Substrate Material Model Options |
|
|
18 | (3) |
|
2.3 Temperature-Dependence Model Options |
|
|
21 | (1) |
|
|
22 | (20) |
|
2.4.1 Long Channel with Uniform Substrate Doping |
|
|
22 | (3) |
|
2.4.2 Short-Channel Effect: Vth Roll-Off and Drain Bias Effects |
|
|
25 | (6) |
|
2.4.3 Narrow-Width Effects |
|
|
31 | (1) |
|
2.4.4 Non-Uniform Substrate Doping |
|
|
32 | (1) |
|
2.4.4.1 Non-Uniform Vertical Doping |
|
|
33 | (3) |
|
2.4.4.2 Non-Uniform Lateral Doping: Pocket Implants |
|
|
36 | (3) |
|
2.4.5 Vth Temperature Dependence |
|
|
39 | (1) |
|
|
40 | (2) |
|
2.5 Poly-Silicon Gate Depletion |
|
|
42 | (3) |
|
|
45 | (1) |
|
|
46 | (5) |
|
2.8 Finite Charge Thickness |
|
|
51 | (2) |
|
|
53 | (5) |
|
2.10 Layout-Dependent Effects: Mechanical Stress and Proximity Effects |
|
|
58 | (8) |
|
|
66 | (1) |
|
|
66 | (21) |
|
|
85 | (2) |
|
Chapter 3 Channel DC Current and Output Resistance |
|
|
87 | (28) |
|
3.1 Introduction and Chapter Objectives |
|
|
87 | (1) |
|
3.2 Channel Current Theory |
|
|
88 | (1) |
|
3.3 Single Continuous Channel Charge Model |
|
|
89 | (4) |
|
3.4 Channel Current in Subthreshold and Linear Operations |
|
|
93 | (2) |
|
3.5 Velocity Saturation and Velocity Overshoot |
|
|
95 | (3) |
|
3.6 Output Resistance in Saturation Region |
|
|
98 | (9) |
|
3.6.1 CLM: Channel Length Modulation |
|
|
100 | (3) |
|
3.6.2 DIBL: Drain-Induced Barrier Lowering |
|
|
103 | (1) |
|
3.6.3 DITS: Drain-Induced Threshold Voltage Shift Due to Non-Uniform Doping |
|
|
104 | (1) |
|
3.6.4 SCBE: Substrate Current Induced Body-Bias Effect |
|
|
105 | (1) |
|
3.6.5 Channel Current Model for All Regions of Operation |
|
|
106 | (1) |
|
3.7 Source-End Velocity Limit |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (6) |
|
|
113 | (2) |
|
Chapter 4 Gate Direct-Tunneling and Body Currents |
|
|
115 | (40) |
|
4.1 Introduction and Chapter Objectives |
|
|
115 | (1) |
|
4.2 Gate Direct-Tunneling Current Theory and Model |
|
|
116 | (22) |
|
4.2.1 Tunneling Mechanisms and Current Components |
|
|
116 | (4) |
|
|
120 | (1) |
|
4.2.3 Gate-Body Tunneling Current Igb |
|
|
121 | (2) |
|
4.2.4 Gate-Source/Drain Tunneling Through Overlap Regions |
|
|
123 | (2) |
|
4.2.5 Gate-Channel Tunneling Current |
|
|
125 | (1) |
|
4.2.5.1 Igc0: The Vds = 0 Bias Scenario |
|
|
125 | (2) |
|
4.2.5.2 Igcs and Igcd Partitioning: The Non-Zero Vds Scenario |
|
|
127 | (10) |
|
4.2.6 Characterization and Parameter Extraction |
|
|
137 | (1) |
|
|
138 | (9) |
|
|
139 | (4) |
|
4.3.2 Gate-Induced Source and Drain Leakage |
|
|
143 | (4) |
|
4.4 Summary of BSIM4 Branch and Terminal DC Currents |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (6) |
|
|
152 | (3) |
|
Chapter 5 Charge and Capacitance Models |
|
|
155 | (34) |
|
5.1 Introduction and Chapter Objectives |
|
|
155 | (2) |
|
5.2 MOSFET Capacitance Theory |
|
|
157 | (10) |
|
5.3 Intrinsic Charge and Capacitance Models |
|
|
167 | (13) |
|
5.3.1 Charge-Thickness Model (CTM) |
|
|
168 | (8) |
|
5.3.2 CAPMOD = 2 Charge Model Formulations |
|
|
176 | (4) |
|
5.4 Fringing and Overlap Capacitances |
|
|
180 | (3) |
|
5.4.1 Fringing Capacitances |
|
|
180 | (1) |
|
5.4.2 Overlap Capacitances |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (5) |
|
|
186 | (3) |
|
Chapter 6 Non-Quasi-Static and Parasitic Gate and Body Resistances |
|
|
189 | (46) |
|
6.1 Introduction and Chapter Objectives |
|
|
189 | (1) |
|
6.2 Gate Electrode Resistance |
|
|
190 | (3) |
|
6.3 Gate Intrinsic-Input Resistance for Non-Quasi-Static Modeling |
|
|
193 | (8) |
|
6.4 Charge-Deficit Transient and AC NQS Models |
|
|
201 | (13) |
|
6.4.1 Charge-Deficit Transient NQS Model |
|
|
201 | (10) |
|
6.4.2 Charge-Deficit AC NQS Model |
|
|
211 | (3) |
|
6.5 Body Resistance Network |
|
|
214 | (12) |
|
6.5.1 RBODYMOD = 1: A Local Network |
|
|
216 | (2) |
|
6.5.2 RBODYMOD = 2: A Scalable Network |
|
|
218 | (1) |
|
|
219 | (5) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (8) |
|
|
233 | (2) |
|
|
235 | (34) |
|
7.1 Introduction and Chapter Objectives |
|
|
235 | (1) |
|
7.2 Noise Representations and Parameters |
|
|
236 | (10) |
|
7.2.1 Noise and Power Spectral Intensity |
|
|
236 | (2) |
|
7.2.2 SPICE Noise Representations |
|
|
238 | (1) |
|
7.2.3 Noise Representation and Parameters of a Two-Port Network |
|
|
239 | (7) |
|
7.3 BSIM4 Flicker Noise Models |
|
|
246 | (7) |
|
7.3.1 The FNOIMOD = 0 Simple Flicker Noise Model |
|
|
248 | (1) |
|
7.3.2 The FNOIMOD = 1 Physics-Based, Unified Flicker noise Model |
|
|
248 | (5) |
|
7.4 BSIM4 Channel Thermal Noise Models |
|
|
253 | (10) |
|
7.4.1 The TNOIMOD = 0 Charge-Based Model |
|
|
254 | (1) |
|
7.4.2 The TNOIMOD = 1 Holistic Thermal Noise Model |
|
|
255 | (8) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (5) |
|
|
266 | (3) |
|
Chapter 8 Source and Drain Parasitics: Layout-Dependence Model |
|
|
269 | (34) |
|
8.1 Introduction and Chapter Objectives |
|
|
269 | (1) |
|
8.2 Connections of a Multi-Transistor Stack |
|
|
270 | (3) |
|
8.3 Source and Drain of a Transistor With Multiple Gate Fingers |
|
|
273 | (2) |
|
8.4 GEOMOD: The End-Source and End-Drain of a Multi-Finger Transistor |
|
|
275 | (1) |
|
8.5 Source and Drain Area and Perimeter Calculation |
|
|
276 | (14) |
|
8.6 Saturation Junction Leakage Current and Zero-Bias Capacitance Models |
|
|
290 | (2) |
|
8.7 Source and Drain Contact Scenarios and Diffusion Resistances |
|
|
292 | (4) |
|
8.8 RGEOMOD: Selecting A Source and Drain Contact Scenario for GEOMOD |
|
|
296 | (2) |
|
|
298 | (1) |
|
|
298 | (5) |
|
Chapter 9 Junction Diode IV and CV Models |
|
|
303 | (42) |
|
9.1 Introduction and Chapter Objectives |
|
|
303 | (1) |
|
9.2 Physical Mechanisms of Diode DC Currents |
|
|
303 | (8) |
|
9.2.1 Shockley-Read-Hall (SRH) Generation and Recombination |
|
|
305 | (2) |
|
9.2.2 Trap-Assisted Tunneling (TAT) |
|
|
307 | (1) |
|
9.2.3 Band-To-Band Tunneling (BTBT) |
|
|
308 | (1) |
|
|
309 | (2) |
|
9.3 BSIM4 Diode DC IV Model [ 4] |
|
|
311 | (10) |
|
|
311 | (4) |
|
|
315 | (1) |
|
|
316 | (5) |
|
9.4 BSIM4 Junction Leakage Due to Trap-Assisted Tunneling [ 4] |
|
|
321 | (1) |
|
9.5 BSIM4 Diode Charge and Capacitance [ 4] |
|
|
322 | (6) |
|
9.5.1 BSIM4 Diode CV Model [ 4] |
|
|
323 | (5) |
|
9.6 Diode Temperature-Dependence Model [ 4] |
|
|
328 | (5) |
|
9.6.1 Temperature-Dependence Model for Diode IV |
|
|
329 | (3) |
|
9.6.2 Diode CV Temperature-Dependence Model |
|
|
332 | (1) |
|
|
333 | (1) |
|
|
333 | (12) |
|
|
343 | (2) |
|
Chapter 10 SPICE Implementation Example: The Methodology with BSIM4 Transient NQS |
|
|
345 | (42) |
|
10.1 Introduction and Chapter Objectives |
|
|
345 | (1) |
|
10.2 Review of the Charge-Deficit Transient NQS Model |
|
|
346 | (1) |
|
10.3 Time Discretization, Equation Linearization and Matrix Stamping |
|
|
347 | (26) |
|
10.3.1 Discretization and Linearization of ich_qs(t) |
|
|
351 | (5) |
|
10.3.2 Stamping of ich_qs(t) |
|
|
356 | (1) |
|
10.3.3 Linearization of iCτnqs (t) |
|
|
357 | (1) |
|
10.3.4 Stamping of iCτnqs (t) |
|
|
357 | (1) |
|
10.3.5 Linearization of iRτnqs (t) |
|
|
358 | (2) |
|
10.3.6 Stamping of iRτnqs (t) |
|
|
360 | (1) |
|
10.3.7 Linearization of ig (t) |
|
|
361 | (2) |
|
10.3.8 Stamping of ig (t) |
|
|
363 | (1) |
|
10.3.9 Linearization of id (t) |
|
|
363 | (3) |
|
10.3.10 Stamping of id (t) |
|
|
366 | (2) |
|
10.3.11 Linearization of is (t) |
|
|
368 | (3) |
|
10.3.12 Stamping of is (t) |
|
|
371 | (2) |
|
10.4 Composite Stamps for Transient NQS Model |
|
|
373 | (2) |
|
|
375 | (7) |
|
10.6 Convergence Checking |
|
|
382 | (3) |
|
|
385 | (2) |
|
|
386 | (1) |
|
Chapter 11 Multi-Gate Transistor Model |
|
|
387 | (24) |
|
11.1 Introduction and Chapter Objectives |
|
|
387 | (1) |
|
11.2 Advantages of FinFETs Over Planar CMOS |
|
|
388 | (2) |
|
|
390 | (16) |
|
11.3.1 The Core Model: Surface Potential Modeling |
|
|
390 | (6) |
|
|
396 | (3) |
|
11.3.3 Charge and Capacitance Models |
|
|
399 | (4) |
|
11.3.4 Modeling of Advanced Physical Effects |
|
|
403 | (3) |
|
|
406 | (3) |
|
|
409 | (2) |
|
|
409 | (2) |
Index |
|
411 | |