Muutke küpsiste eelistusi

Computer Vision ECCV 2024: 18th European Conference, Milan, Italy, September 29October 4, 2024, Proceedings, Part XXVIII 2024 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 487 pages, kõrgus x laius: 235x155 mm, 167 Illustrations, color; 3 Illustrations, black and white; LXXXV, 487 p. 170 illus., 167 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15086
  • Ilmumisaeg: 31-Oct-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031733894
  • ISBN-13: 9783031733895
  • Pehme köide
  • Hind: 70,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 83,45 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 487 pages, kõrgus x laius: 235x155 mm, 167 Illustrations, color; 3 Illustrations, black and white; LXXXV, 487 p. 170 illus., 167 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15086
  • Ilmumisaeg: 31-Oct-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031733894
  • ISBN-13: 9783031733895
The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29October 4, 2024.





The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
CLIP-Guided Generative Networks for Transferable Targeted Adversarial
Attacks.- Flash Cache: Reducing Bias in Radiance Cache Based Inverse
Rendering.- Progressive Classifier and Feature Extractor Adaptation for
Unsupervised Domain Adaptation on Point Clouds.- A New Dataset and Framework
for Real-World  Blurred Images Super-Resolution.- AddressCLIP: Empowering
Vision-Language Models for City-wide Image Address Localization.- RISurConv:
Rotation Invariant Surface Attention-Augmented Convolutions for 3D Point
Cloud Classification and Segmentation.- StyleTokenizer: Defining Image Style
by a Single Instance for Controlling Diffusion Models.- Bidirectional
Uncertainty-Based Active Learning for Open-Set Annotation.- Preventing
Catastrophic Overfitting in Fast Adversarial Training: A Bi-level
Optimization Perspective.- Projecting Points to Axes: Oriented Object
Detection via Point-Axis Representation.- SeiT++: Masked Token Modeling
Improves Storage-efficient Training.- Rectify the Regression Bias in
Long-Tailed Object Detection.- MagicEraser: Erasing Any Objects via
Semantics-Aware Control.- Reliable Spatial-Temporal Voxels For Multi-Modal
Test-Time Adaptation.- Stable Preference: Redefining training paradigm of
human preference model for Text-to-Image Synthesis.- SparseSSP: 3D
Subcellular Structure Prediction from Sparse-View Transmitted Light Images.-
NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with
Diffusion Model.- Self-Adapting Large Visual-Language Models to Edge Devices
across Visual Modalities.- Diff-Tracker: Text-to-Image Diffusion Models are
Unsupervised Trackers.- Rethinking Tree-Ring Watermarking for Enhanced
Multi-Key Identification.- 3D Small Object Detection with Dynamic Spatial
Pruning.- STSP: Spatial-Temporal Subspace Projection for Video
Class-incremental Learning.- Transferable 3D Adversarial Shape Completion
using Diffusion Models.- OmniSat: Self-Supervised Modality Fusion for Earth
Observation.- Distilling Diffusion Models into Conditional GANs.-
Semantically Guided Representation Learning For Action Anticipation.- MemBN:
Robust Test-Time Adaptation via Batch Norm with Statistics Memory.