Muutke küpsiste eelistusi

E-raamat: Computer Vision - ECCV 2024: 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XXVIII

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29October 4, 2024.





The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
CLIP-Guided Generative Networks for Transferable Targeted Adversarial
Attacks.- Flash Cache: Reducing Bias in Radiance Cache Based Inverse
Rendering.- Progressive Classifier and Feature Extractor Adaptation for
Unsupervised Domain Adaptation on Point Clouds.- A New Dataset and Framework
for Real-World  Blurred Images Super-Resolution.- AddressCLIP: Empowering
Vision-Language Models for City-wide Image Address Localization.- RISurConv:
Rotation Invariant Surface Attention-Augmented Convolutions for 3D Point
Cloud Classification and Segmentation.- StyleTokenizer: Defining Image Style
by a Single Instance for Controlling Diffusion Models.- Bidirectional
Uncertainty-Based Active Learning for Open-Set Annotation.- Preventing
Catastrophic Overfitting in Fast Adversarial Training: A Bi-level
Optimization Perspective.- Projecting Points to Axes: Oriented Object
Detection via Point-Axis Representation.- SeiT++: Masked Token Modeling
Improves Storage-efficient Training.- Rectify the Regression Bias in
Long-Tailed Object Detection.- MagicEraser: Erasing Any Objects via
Semantics-Aware Control.- Reliable Spatial-Temporal Voxels For Multi-Modal
Test-Time Adaptation.- Stable Preference: Redefining training paradigm of
human preference model for Text-to-Image Synthesis.- SparseSSP: 3D
Subcellular Structure Prediction from Sparse-View Transmitted Light Images.-
NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with
Diffusion Model.- Self-Adapting Large Visual-Language Models to Edge Devices
across Visual Modalities.- Diff-Tracker: Text-to-Image Diffusion Models are
Unsupervised Trackers.- Rethinking Tree-Ring Watermarking for Enhanced
Multi-Key Identification.- 3D Small Object Detection with Dynamic Spatial
Pruning.- STSP: Spatial-Temporal Subspace Projection for Video
Class-incremental Learning.- Transferable 3D Adversarial Shape Completion
using Diffusion Models.- OmniSat: Self-Supervised Modality Fusion for Earth
Observation.- Distilling Diffusion Models into Conditional GANs.-
Semantically Guided Representation Learning For Action Anticipation.- MemBN:
Robust Test-Time Adaptation via Batch Norm with Statistics Memory.